Previous |  Up |  Next

Article

Title: On the existence of optimal controls for nonlinear infinite dimensional systems (English)
Author: Fiacca, Antonella
Author: Papageorgiou, Nikolaos S.
Author: Papalini, Francesca
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 2
Year: 1998
Pages: 291-312
Summary lang: English
.
Category: math
.
Summary: We consider nonlinear systems with a priori feedback. We establish the existence of admissible pairs and then we show that the Lagrange optimal control problem admits an optimal pair. As application we work out in detail two examples of optimal control problems for nonlinear parabolic partial differential equations. (English)
Keyword: evolution triple
Keyword: optimal control
Keyword: monotone operator
Keyword: hemicontinuous operator
Keyword: parabolic system
Keyword: property $(Q)$
MSC: 34G20
MSC: 34H05
MSC: 47N20
MSC: 49J25
MSC: 49J27
idZBL: Zbl 0955.34049
idMR: MR1624323
.
Date available: 2009-09-24T10:13:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127417
.
Reference: [1] N. U. Ahmed – K. L. Teo: Optimal Control of Distributed Parameter Systems.North Holland, New York, 1981. MR 0624064
Reference: [2] E. Balder: Necessary and sufficient conditions for $L_1$-strong-weak lower semicontinuity of integral functionals.Nonlinear Analysis 11 (1987), 1399–1404. MR 0917861, 10.1016/0362-546X(87)90092-7
Reference: [3] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff, Leyden, 1976. Zbl 0328.47035, MR 0390843
Reference: [4] L. D. Berkovitz: Optimal Control Theory.Springer-Verlag, New York, 1974. Zbl 0295.49001, MR 0372707
Reference: [5] L. Cesari: Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints - I.Trans. Amer. Math. Society 124 (1966), 369–412. Zbl 0145.12501, MR 0203542, 10.1090/S0002-9947-1966-0203542-1
Reference: [6] L. Cesari: Optimization-Theory and Applications.Springer-Verlag, New York, 1983. Zbl 0506.49001, MR 0688142
Reference: [7] G. A. Edgar: Measurability in a Banach space - II.Indiana J. Math. 28 (1979), 559–579. Zbl 0418.46034, MR 0542944, 10.1512/iumj.1979.28.28039
Reference: [8] A. Fryszkowski: The generalization of Cellina’s Fixed Point Theorem.Studia Math. 78 (1983), 213–215. MR 0766717, 10.4064/sm-78-2-213-215
Reference: [9] S. H. Hou: On Property $(Q)$ and other semicontinuity properties of multifunctions.Pacific Journal Math. 103 (1982), 39–56. MR 0687963, 10.2140/pjm.1982.103.39
Reference: [10] V. Levin: Borel sections of many valued maps.Siberian Math. J. 19 (1979), 434–438. Zbl 0409.54048, 10.1007/BF01875294
Reference: [11] J. L. Lions: Optimal Control of Systems Governed by Partial Differential Equations.Springer, Berlin, 1971. Zbl 0203.09001, MR 0271512
Reference: [12] N. S. Papageorgiou: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32 (1987), 437–464. Zbl 0634.28005, MR 0914749
Reference: [13] N. S. Papageorgiou: Convergence theorems for Banach space-valued integrable multifunctions.Intern. J. Math. and Math. Sci. 10 (1987), 433–442. Zbl 0619.28009, MR 0896595, 10.1155/S0161171287000516
Reference: [14] D. Wagner: Survey on measurable selection theorems.SIAM J. Control Optim. 15 (1977), 859–903. MR 0486391, 10.1137/0315056
Reference: [15] E. Zeidler: Nonlinear Functional Analysis and Its Application II.Springer, New York, 1990. MR 0816732
.

Files

Files Size Format View
CzechMathJ_48-1998-2_7.pdf 434.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo