Title:
|
On $\sigma$-discrete Borel mappings via quasi-metrics (English) |
Author:
|
Künzi, Hans-Peter A. |
Author:
|
Wajch, Eliza |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
48 |
Issue:
|
3 |
Year:
|
1998 |
Pages:
|
439-455 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Keyword:
|
quasi-metric |
Keyword:
|
continuous map |
Keyword:
|
Borel map |
Keyword:
|
$\sigma $-discrete map |
Keyword:
|
$\sigma $-discretely decomposable family |
Keyword:
|
absolutely Borel set |
Keyword:
|
absolutely analytic space |
MSC:
|
26A21 |
MSC:
|
28A05 |
MSC:
|
54E35 |
MSC:
|
54H05 |
idZBL:
|
Zbl 0949.54036 |
idMR:
|
MR1637926 |
. |
Date available:
|
2009-09-24T10:15:14Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127431 |
. |
Reference:
|
[1] R. Engelking: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[2] W. G. Fleissner: An axiom for nonseparable Borel Theory.Trans. Amer. Math. Soc. 251 (1979), 309–328. Zbl 0428.03044, MR 0531982, 10.1090/S0002-9947-1979-0531982-9 |
Reference:
|
[3] W. G. Fleissner, R. W. Hansell and H. J. K. Junnila: PMEA implies Proposition P.Topology Appl. 13 (1982), 255–262. MR 0651508, 10.1016/0166-8641(82)90034-7 |
Reference:
|
[4] P. Fletcher and W. F. Lindgren: Quasi-uniform Spaces.Marcel Dekker, New York, 1982. MR 0660063 |
Reference:
|
[5] D. H. Fremlin, R. W. Hansell and H. J. K. Junnila: Borel functions of bounded class.Trans. Amer. Math. Soc. 277 (1983), 835–849. MR 0694392, 10.1090/S0002-9947-1983-0694392-0 |
Reference:
|
[6] R. W. Hansell: Borel measurable mappings for nonseparable metric spaces.Trans. Amer. Math. Soc. 161 (1971), 145–169. Zbl 0232.28007, MR 0288228, 10.1090/S0002-9947-1971-0288228-1 |
Reference:
|
[7] R. W. Hansell: On Borel mappings and Baire functions.Trans. Amer. Math. Soc. 194 (1974), 195–211. Zbl 0295.54047, MR 0362270, 10.1090/S0002-9947-1974-0362270-7 |
Reference:
|
[8] H. J. K. Junnila: Neighbournets.Pacific J. Math. 76 (1978), 83–108. MR 0482677 |
Reference:
|
[9] H. J. K. Junnila and H. P. A. Künzi: Characterizations of absolute $F_{{ \sigma }{ \delta }}$-sets.Czech Math. Journal (to appear). MR 1614072 |
Reference:
|
[10] H. P. A. Künzi: On strongly quasi-metrizable spaces.Arch. Math. (Basel) 41 (1983), 57–63. 10.1007/BF01193823 |
Reference:
|
[11] H. P. A. Künzi and E. Wajch: Borel classification via quasi-metrics.Topology Appl. 77 (1997), 183–192. MR 1451651, 10.1016/S0166-8641(96)00141-1 |
Reference:
|
[12] K. Kuratowski: Topology, vol. I.Academic Press, New York and London, 1966. Zbl 0158.40901, MR 0217751 |
Reference:
|
[13] E. P. Lane: Bitopological spaces and quasi-uniform spaces.Proc. London Math. Soc. 17 (1967), 241–256. Zbl 0152.21101, MR 0205221 |
Reference:
|
[14] S. Romaguera and S. Salbany: On bicomplete quasi-pseudometrizability.Topology Appl. 50 (1993), 283–289. MR 1227555, 10.1016/0166-8641(93)90026-A |
Reference:
|
[15] A. H. Stone: Analytic sets in non-separable metric spaces, Part 5 of “Analytic Sets” (C. A. Rogers et al.).Academic Press, London, 1980. |
. |