Previous |  Up |  Next

Article

Title: On $\sigma$-discrete Borel mappings via quasi-metrics (English)
Author: Künzi, Hans-Peter A.
Author: Wajch, Eliza
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 3
Year: 1998
Pages: 439-455
Summary lang: English
.
Category: math
.
Keyword: quasi-metric
Keyword: continuous map
Keyword: Borel map
Keyword: $\sigma $-discrete map
Keyword: $\sigma $-discretely decomposable family
Keyword: absolutely Borel set
Keyword: absolutely analytic space
MSC: 26A21
MSC: 28A05
MSC: 54E35
MSC: 54H05
idZBL: Zbl 0949.54036
idMR: MR1637926
.
Date available: 2009-09-24T10:15:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127431
.
Reference: [1] R. Engelking: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [2] W. G. Fleissner: An axiom for nonseparable Borel Theory.Trans. Amer. Math. Soc. 251 (1979), 309–328. Zbl 0428.03044, MR 0531982, 10.1090/S0002-9947-1979-0531982-9
Reference: [3] W. G. Fleissner, R. W. Hansell and H. J. K. Junnila: PMEA implies Proposition P.Topology Appl. 13 (1982), 255–262. MR 0651508, 10.1016/0166-8641(82)90034-7
Reference: [4] P. Fletcher and W. F. Lindgren: Quasi-uniform Spaces.Marcel Dekker, New York, 1982. MR 0660063
Reference: [5] D. H. Fremlin, R. W. Hansell and H. J. K. Junnila: Borel functions of bounded class.Trans. Amer. Math. Soc. 277 (1983), 835–849. MR 0694392, 10.1090/S0002-9947-1983-0694392-0
Reference: [6] R. W. Hansell: Borel measurable mappings for nonseparable metric spaces.Trans. Amer. Math. Soc. 161 (1971), 145–169. Zbl 0232.28007, MR 0288228, 10.1090/S0002-9947-1971-0288228-1
Reference: [7] R. W. Hansell: On Borel mappings and Baire functions.Trans. Amer. Math. Soc. 194 (1974), 195–211. Zbl 0295.54047, MR 0362270, 10.1090/S0002-9947-1974-0362270-7
Reference: [8] H. J. K. Junnila: Neighbournets.Pacific J. Math. 76 (1978), 83–108. MR 0482677
Reference: [9] H. J. K. Junnila and H. P. A. Künzi: Characterizations of absolute $F_{{ \sigma }{ \delta }}$-sets.Czech Math. Journal (to appear). MR 1614072
Reference: [10] H. P. A. Künzi: On strongly quasi-metrizable spaces.Arch. Math. (Basel) 41 (1983), 57–63. 10.1007/BF01193823
Reference: [11] H. P. A. Künzi and E. Wajch: Borel classification via quasi-metrics.Topology Appl. 77 (1997), 183–192. MR 1451651, 10.1016/S0166-8641(96)00141-1
Reference: [12] K. Kuratowski: Topology, vol. I.Academic Press, New York and London, 1966. Zbl 0158.40901, MR 0217751
Reference: [13] E. P. Lane: Bitopological spaces and quasi-uniform spaces.Proc. London Math. Soc. 17 (1967), 241–256. Zbl 0152.21101, MR 0205221
Reference: [14] S. Romaguera and S. Salbany: On bicomplete quasi-pseudometrizability.Topology Appl. 50 (1993), 283–289. MR 1227555, 10.1016/0166-8641(93)90026-A
Reference: [15] A. H. Stone: Analytic sets in non-separable metric spaces, Part 5 of “Analytic Sets” (C. A. Rogers et al.).Academic Press, London, 1980.
.

Files

Files Size Format View
CzechMathJ_48-1998-3_6.pdf 430.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo