Previous |  Up |  Next

Article

Title: On a generalization of a Greguš fixed point theorem (English)
Author: Ćirić, Ljubomir
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 3
Year: 2000
Pages: 449-458
Summary lang: English
.
Category: math
.
Summary: Let $C$ be a closed convex subset of a complete convex metric space $X$. In this paper a class of selfmappings on $C$, which satisfy the nonexpansive type condition $(2)$ below, is introduced and investigated. The main result is that such mappings have a unique fixed point. (English)
Keyword: convex metric space
Keyword: nonexpansive type mapping
Keyword: fixed point
MSC: 47H10
MSC: 54H25
idZBL: Zbl 1079.47509
idMR: MR1777468
.
Date available: 2009-09-24T10:34:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127584
.
Reference: [LJC93] LJ. B. Ćirić: On some discontinuous fixed point mappings in convex metric spaces.Czechoslovak Math. J. 43(118) (1993), 319–326. MR 1211753
Reference: [LJC74] LJ. B. Ćirić: A generalization of Banach’s contraction principle.Proc. Amer. Math. Soc. 45 (1974), 267–273. 10.2307/2040075
Reference: [LJC91] LJ. B. Ćirić: On a common fixed point theorem of a Greguš type.Publ. Inst. Math (Beograd) (49)63 (1991), 174–178. MR 1127395
Reference: [MD87] M. L. Diviccaro, B. Fisher, S. Sessa: A common fixed point theorem of Greguš type.Publ. Math. Debrecen 34 (1987), 83–89. MR 0901008
Reference: [BF82] B. Fisher: Common fixed points on a Banach space.Chung Yuan J. 11 (1982), 19–26.
Reference: [BF86] B. Fisher, S. Sessa: On a fixed point theorem of Greguš.Internat. J. Math. Math. Sci. 9 (1986), no. 1, 23–28. MR 0837098, 10.1155/S0161171286000030
Reference: [MG80] M. Greguš: A fixed point theorem in Banach space.Boll. Un. Mat. Ital. A 5 (1980), 193–198. MR 0562137
Reference: [BL89] B. Y. Li: Fixed point theorems of nonexpansive mappings in convex metric spaces.Appl. Math. Mech. (English Ed.) 10 (1989), 183–188. 10.1007/BF02014826
Reference: [RM88] R. N. Mukherjea, V. Verma: A note on a fixed point theorem of Greguš.Math. Japon. 33 (1988), 745–749. MR 0972387
Reference: [WT70] W. Takahashi: A convexity in metric space and nonexpansive mappings I.Kodai Math. Sem. Rep. 22 (1970), 142–149. Zbl 0268.54048, MR 0267565, 10.2996/kmj/1138846111
.

Files

Files Size Format View
CzechMathJ_50-2000-3_1.pdf 305.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo