Previous |  Up |  Next

Article

Title: Local convergence theorems of Newton’s method for nonlinear equations using outer or generalized inverses (English)
Author: Argyros, Ioannis K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 3
Year: 2000
Pages: 603-614
Summary lang: English
.
Category: math
.
Summary: We provide local convergence theorems for Newton’s method in Banach space using outer or generalized inverses. In contrast to earlier results we use hypotheses on the second instead of the first Fréchet-derivative. This way our convergence balls differ from earlier ones. In fact we show that with a simple numerical example that our convergence ball contains earlier ones. This way we have a wider choice of initial guesses than before. Our results can be used to solve undetermined systems, nonlinear least squares problems and ill-posed nonlinear operator equations. (English)
Keyword: Newton’s method
Keyword: Banach space
Keyword: Fréchet-derivative
Keyword: local convergence
Keyword: outer inverse
Keyword: generalized inverse
MSC: 47H17
MSC: 47J25
MSC: 49D15
MSC: 65J15
idZBL: Zbl 1079.65528
idMR: MR1777480
.
Date available: 2009-09-24T10:36:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127596
.
Reference: [1] M. Anitescu, D. I. Coroian, M. Z. Nashed, F. A. Potra: Outer inverses and multi-body system simulation.Numer. Funct. Anal. Optim. 17 (7 and 8) (1996), 661–678. MR 1421973, 10.1080/01630569608816717
Reference: [2] I. K. Argyros: On the solution of undetermined systems of nonlinear equations in Euclidean spaces.Pure Math. Appl. 4, 3 (1993), 199–209. Zbl 0809.47053, MR 1270429
Reference: [3] I. K. Argyros: On the discretization of Newton-like methods.Int. J. Comput. Math. 52 (1994), 161–170. 10.1080/00207169408804301
Reference: [4] I. K. Argyros: Comparing the radii of some balls appearing in connection to three local convergence theorems for Newton’s method.Southwest J. Pure Appl. Math. 1 (1998). Zbl 0907.65053, MR 1644490
Reference: [5] I. K. Argyros: Semilocal convergence theorems for a certain class of iterative procedures using outer or generalized inverses and hypotheses on the second Fréchet-derivative.Korean J. Comput. Appl. Math. 6 (1999). MR 1732001
Reference: [6] I. K. Argyros, F. Szidarovszky: The Theory and Application of Iteration Methods.CRC Press, Inc., Boca Raton, Florida, U.S.A., 1993. MR 1272012
Reference: [7] A. Ben-Israel: A Newton-Raphson method for the solution of equations.J. Math. Anal. Appl. 15 (1966), 243–253. MR 0205445, 10.1016/0022-247X(66)90115-6
Reference: [8] A. Ben-Israel, T. N. E. Greville: Generalized Inverses: Theory and Applications.John Wiley and Sons, New York, 1974. MR 0396607
Reference: [9] X. Chen, M. Z. Nashed: Convergence of Newton-like methods for singular operator equations using outer inverses.Numer. Math. 66 (1993), 235–257. MR 1245013, 10.1007/BF01385696
Reference: [10] X. Chen, M. Z. Nashed, L. Qi: Convergence of Newton’s method for singular and nonsmooth equations using outer inverses.SIAM J. Optim. 7 (1997), 445–462. MR 1443628, 10.1137/S1052623493246288
Reference: [11] P. Deuflhard, G. Heindl: Affine invariant convergence theorems for Newton’s method and extensions to related methods.SIAM J. Numer. Anal. 16 (1979), 1–10. MR 0518680, 10.1137/0716001
Reference: [12] W. M. Häubler: A Kantorovich-type convergence analysis for the Gauss-Newton method.Numer. Math. 48 (1986), 119–125. MR 0817125, 10.1007/BF01389446
Reference: [13] L. V. Kantorovich, G. P. Akilov: Functional Analysis.Pergamon Press, Oxford, 1982. MR 0664597
Reference: [14] M. Z. Nashed: Inner, outer and generalized inverses in Banach and Hilbert spaces.Numer. Funct. Anal. Optim. 9 (1987), 261–325. Zbl 0633.47001, MR 0887072, 10.1080/01630568708816235
.

Files

Files Size Format View
CzechMathJ_50-2000-3_13.pdf 330.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo