Title:
|
On nonoscillation of canonical or noncanonical disconjugate functional equations (English) |
Author:
|
Singh, Bhagat |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
50 |
Issue:
|
3 |
Year:
|
2000 |
Pages:
|
627-639 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Qualitative comparison of the nonoscillatory behavior of the equations \[ L_ny(t) + H(t,y(t)) = 0 \] and \[ L_ny(t) + H(t,y(g(t))) = 0 \] is sought by way of finding different nonoscillation criteria for the above equations. $L_n$ is a disconjugate operator of the form \[ L_n = \frac{1}{p_n(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{1}{p_{n-1}(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \ldots \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{\cdot }{p_0(t)}. \] Both canonical and noncanonical forms of $L_n$ have been studied. (English) |
Keyword:
|
canonical |
Keyword:
|
noncanonical |
Keyword:
|
oscillatory |
Keyword:
|
nonoscillatory |
Keyword:
|
principal system |
MSC:
|
34K11 |
MSC:
|
34K15 |
MSC:
|
34K25 |
MSC:
|
35J30 |
MSC:
|
35R10 |
idZBL:
|
Zbl 1079.34545 |
idMR:
|
MR1777483 |
. |
Date available:
|
2009-09-24T10:36:25Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127598 |
. |
Reference:
|
[1] R. S. Dahiya, B. Singh: A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equation.J. Math. Phys. Sci. 7 (1973), 163–170. MR 0350151 |
Reference:
|
[2] J. Dzurina, J. Ohriska: Asymptotic and oscillatory properties of differential equations with deviating argument.Hiroshima Math. J. 22 (1992), 561–571. MR 1194051, 10.32917/hmj/1206128503 |
Reference:
|
[3] H. Onose: Oscillatory properties of ordinary differential equations of arbitrary order.J. Differential Equations 7 (1970), 454–458. MR 0257465, 10.1016/0022-0396(70)90093-8 |
Reference:
|
[4] Ch. G. Philos: Oscillatory and asymptotic behavior of differential equations with deviating arguments.Proc. Roy. Soc. Edinburgh 81 (1978), 195–210. MR 0516413 |
Reference:
|
[5] Ch. G. Philos, V. A. Staikos: Asymptotic properties of nonoscillatory solutions of differential equations with deviating arguments.Pacific J. Math. 70 (1977), 221–242. MR 0466876, 10.2140/pjm.1977.70.221 |
Reference:
|
[6] Y. G. Sficos, I. P. Stavroulakis: On the oscillatory and asymptotic behavior of a class of differential equations with deviating arguments.SIAM J. Math. Anal. 9 (1978), 956–966. MR 0508836, 10.1137/0509078 |
Reference:
|
[7] B. Singh, T. Kusano: Asymptotic behavior of oscillatory solutions of a differential equation with deviating arguments.J. Math. Anal. Appl. 83 (1981), 395–407. MR 0641341, 10.1016/0022-247X(81)90131-1 |
Reference:
|
[8] B. Singh: Forced nonoscillations in second order functional equations.Hiroshima Math. J. 7 (1977), 657–665. Zbl 0411.34042, MR 0499608, 10.32917/hmj/1206135651 |
Reference:
|
[9] B. Singh: A Correction to “Forced oscillations in general ordinary differential equations with deviating arguments”.Hiroshima Math. J. 9 (1979), 297–302. Zbl 0409.34070, MR 0529336, 10.32917/hmj/1206135207 |
Reference:
|
[10] B. Singh: On the Oscillation of an elliptic equation of fourth order.Tamkang J. Math. 27 (1996), 151–159. Zbl 0857.35011, MR 1407010 |
Reference:
|
[11] B. Singh: Asymptotically vanishing oscillatory trajectories in second order retarded equations.SIAM J. Math. Anal. 7 (1976), 37–44. Zbl 0321.34058, MR 0425308, 10.1137/0507005 |
Reference:
|
[12] B. Singh: Slowly oscillating and nonoscillating trajectories in second order retarded sublinear equations.Math. Japon. 24 (1980), 617–623. Zbl 0429.34063, MR 0565547 |
Reference:
|
[13] V. A. Staikos, Ch. G. Philos: Nonoscillatory phenomena and damped oscillations.Nonlinear Anal. 2 (1978), 197–210. MR 0512283, 10.1016/0362-546X(78)90066-4 |
Reference:
|
[14] C. C. Travis: Oscillation theorems for second order differential equations with functional arguments.Proc. Amer. Math. Soc. 30 (1972), 199–201. Zbl 0235.34141, MR 0285789 |
Reference:
|
[15] W. F. Trench: Canonical forms and principal systems in general disconjugate equations.Trans. Amer. Math. Soc. 189 (1974), 319–327. MR 0330632, 10.1090/S0002-9947-1974-0330632-X |
. |