Previous |  Up |  Next

Article

Title: On nonoscillation of canonical or noncanonical disconjugate functional equations (English)
Author: Singh, Bhagat
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 3
Year: 2000
Pages: 627-639
Summary lang: English
.
Category: math
.
Summary: Qualitative comparison of the nonoscillatory behavior of the equations \[ L_ny(t) + H(t,y(t)) = 0 \] and \[ L_ny(t) + H(t,y(g(t))) = 0 \] is sought by way of finding different nonoscillation criteria for the above equations. $L_n$ is a disconjugate operator of the form \[ L_n = \frac{1}{p_n(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{1}{p_{n-1}(t)} \frac{\mathrm{d}{}}{\mathrm{d}t} \ldots \frac{\mathrm{d}{}}{\mathrm{d}t} \frac{\cdot }{p_0(t)}. \] Both canonical and noncanonical forms of $L_n$ have been studied. (English)
Keyword: canonical
Keyword: noncanonical
Keyword: oscillatory
Keyword: nonoscillatory
Keyword: principal system
MSC: 34K11
MSC: 34K15
MSC: 34K25
MSC: 35J30
MSC: 35R10
idZBL: Zbl 1079.34545
idMR: MR1777483
.
Date available: 2009-09-24T10:36:25Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127598
.
Reference: [1] R. S. Dahiya, B. Singh: A Liapunov inequality and nonoscillation theorem for a second order nonlinear differential-difference equation.J. Math. Phys. Sci. 7 (1973), 163–170. MR 0350151
Reference: [2] J. Dzurina, J. Ohriska: Asymptotic and oscillatory properties of differential equations with deviating argument.Hiroshima Math. J. 22 (1992), 561–571. MR 1194051, 10.32917/hmj/1206128503
Reference: [3] H. Onose: Oscillatory properties of ordinary differential equations of arbitrary order.J. Differential Equations 7 (1970), 454–458. MR 0257465, 10.1016/0022-0396(70)90093-8
Reference: [4] Ch. G. Philos: Oscillatory and asymptotic behavior of differential equations with deviating arguments.Proc. Roy. Soc. Edinburgh 81 (1978), 195–210. MR 0516413
Reference: [5] Ch. G. Philos, V. A. Staikos: Asymptotic properties of nonoscillatory solutions of differential equations with deviating arguments.Pacific J. Math. 70 (1977), 221–242. MR 0466876, 10.2140/pjm.1977.70.221
Reference: [6] Y. G. Sficos, I. P. Stavroulakis: On the oscillatory and asymptotic behavior of a class of differential equations with deviating arguments.SIAM J. Math. Anal. 9 (1978), 956–966. MR 0508836, 10.1137/0509078
Reference: [7] B. Singh, T. Kusano: Asymptotic behavior of oscillatory solutions of a differential equation with deviating arguments.J. Math. Anal. Appl. 83 (1981), 395–407. MR 0641341, 10.1016/0022-247X(81)90131-1
Reference: [8] B. Singh: Forced nonoscillations in second order functional equations.Hiroshima Math. J. 7 (1977), 657–665. Zbl 0411.34042, MR 0499608, 10.32917/hmj/1206135651
Reference: [9] B. Singh: A Correction to “Forced oscillations in general ordinary differential equations with deviating arguments”.Hiroshima Math. J. 9 (1979), 297–302. Zbl 0409.34070, MR 0529336, 10.32917/hmj/1206135207
Reference: [10] B. Singh: On the Oscillation of an elliptic equation of fourth order.Tamkang J. Math. 27 (1996), 151–159. Zbl 0857.35011, MR 1407010
Reference: [11] B. Singh: Asymptotically vanishing oscillatory trajectories in second order retarded equations.SIAM J. Math. Anal. 7 (1976), 37–44. Zbl 0321.34058, MR 0425308, 10.1137/0507005
Reference: [12] B. Singh: Slowly oscillating and nonoscillating trajectories in second order retarded sublinear equations.Math. Japon. 24 (1980), 617–623. Zbl 0429.34063, MR 0565547
Reference: [13] V. A. Staikos, Ch. G. Philos: Nonoscillatory phenomena and damped oscillations.Nonlinear Anal. 2 (1978), 197–210. MR 0512283, 10.1016/0362-546X(78)90066-4
Reference: [14] C. C. Travis: Oscillation theorems for second order differential equations with functional arguments.Proc. Amer. Math. Soc. 30 (1972), 199–201. Zbl 0235.34141, MR 0285789
Reference: [15] W. F. Trench: Canonical forms and principal systems in general disconjugate equations.Trans. Amer. Math. Soc. 189 (1974), 319–327. MR 0330632, 10.1090/S0002-9947-1974-0330632-X
.

Files

Files Size Format View
CzechMathJ_50-2000-3_15.pdf 346.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo