| Title:
             | 
Commutativity of rings through a Streb’s result (English) | 
| Author:
             | 
Khan, Moharram A. | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
50 | 
| Issue:
             | 
4 | 
| Year:
             | 
2000 | 
| Pages:
             | 
791-801 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In this paper we investigate commutativity of rings with unity satisfying any one of the properties: \[ \begin{aligned} &\lbrace 1- g(yx^{m}) \rbrace \ [yx^{m} - x^{r} f (yx^{m}) \ x^s, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\&\lbrace 1- g(yx^{m}) \rbrace \ [x^{m} y - x^{r} f (yx^{m}) x^{s}, x] \lbrace 1- h (yx^{m}) \rbrace = 0, \\&y^{t} [x,y^{n}] = g (x) [f (x), y] h (x)\ {\mathrm and} \ \ [x,y^{n}] \ y^{t} = g (x) [f (x), y] h (x) \end{aligned} \] for some $f(X)$ in $X^{2} {\mathbb Z}[X]$ and $g(X)$, $ h(X)$ in ${\mathbb Z} [X]$, where $m \ge 0$, $ r \ge 0$, $ s \ge 0$, $ n > 0$, $ t > 0$ are non-negative integers. We also extend these results to the case when integral exponents in the underlying conditions are no longer fixed, rather they depend on the pair of ring elements $x$ and $y$ for their values. Further, under different appropriate constraints on commutators, commutativity of rings has been studied. These results generalize a number of commutativity theorems established recently. (English) | 
| Keyword:
             | 
commutators | 
| Keyword:
             | 
division rings | 
| Keyword:
             | 
factorsubrings | 
| Keyword:
             | 
polynomial identities | 
| Keyword:
             | 
torsion-free rings | 
| MSC:
             | 
16R50 | 
| MSC:
             | 
16U70 | 
| MSC:
             | 
16U80 | 
| idZBL:
             | 
Zbl 1079.16504 | 
| idMR:
             | 
MR1792970 | 
| . | 
| Date available:
             | 
2009-09-24T10:37:53Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127610 | 
| . | 
| Reference:
             | 
[1] H. E. Bell, M. A. Quadri and M. A. Khan: Two commutativity theorems for rings.Rad. Mat. 3 (1987), 255–260. MR 0931981 | 
| Reference:
             | 
[2] M. Chacron: A commutativity theorem for rings.Proc. Amer. Math. Soc. 59 (1976), 211–216. Zbl 0341.16020, MR 0414636, 10.1090/S0002-9939-1976-0414636-1 | 
| Reference:
             | 
[3] I. N. Herstein: Two remarks on commutativity of rings.Canad. J. Math. 7 (1955), 411–412. MR 0071405, 10.4153/CJM-1955-044-2 | 
| Reference:
             | 
[4] T. P. Kezlan: A note on commutativity of semiprime PI-rings.Math. Japon. 27 (1982)), 267–268. Zbl 0481.16013, MR 0655230 | 
| Reference:
             | 
[5] M. A. Khan: Commutativity of right $s$-unital rings with polynomial constraints.J. Inst. Math. Comput. Sci. 12 (1999), 47–51. Zbl 0935.16023, MR 1693433 | 
| Reference:
             | 
[6] H. Komatsu and H. Tominaga: Chacron’s condition and commutativity theorems.Math. J. Okayama Univ. 31 (1989), 101–120. MR 1043353 | 
| Reference:
             | 
[7] E. Psomopoulos: Commutativity theorems for rings and groups with constraints on commutators.Internat. J. Math. Math. Sci. 7 (1984), 513–517. Zbl 0561.16013, MR 0771600, 10.1155/S0161171284000569 | 
| Reference:
             | 
[8] M. O. Searoid and D. MacHale: Two elementary generalisations of Boolean rings.Amer. Math. Monthly, 93 (1986), 121–122. MR 0827587, 10.2307/2322707 | 
| Reference:
             | 
[9] W. Streb: Zur Struktur nichtkommutativer Ringe.Math. J. Okayama Univ. 31 (1989), 135–140. Zbl 0702.16022, MR 1043356 | 
| Reference:
             | 
[10] H. Tominaga and A. Yaqub: Commutativity theorems for rings with constraints involving a commutative subset.Results Math. 11 (1987), 186–192. MR 0880201, 10.1007/BF03323267 | 
| Reference:
             | 
[11] J. Tong: On the commutativity of a ring with identity.Canad. Math. Bull. 72 (1984), 456–460. Zbl 0545.16015, MR 0763045, 10.4153/CMB-1984-071-x | 
| . |