[2] W. F. Ames: 
Nonlinear Partial Differential Equations in Engineering. Academic Press, New York, 1965. 
MR 0210342 | 
Zbl 0176.39701 
[4] A. Anane and J. P. Gossez: 
Strongly nonlinear elliptic problems near resonance: a variational approach. Comm. Partial Differential Equations 15 (1990), 1141–1159. 
DOI 10.1080/03605309908820717 | 
MR 1070239 
[6] L. Boccardo, P. Drábek, D. Giachetti and M. Kučera: 
Generalization of Fredholm alternative for nonlinear differential operators. Nonlinear Anal. TMA 10 (1986), 1083–1103. 
MR 0857742 
[7] K. C. Chang: 
Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102–129. 
DOI 10.1016/0022-247X(81)90095-0 | 
MR 0614246 
[8] D. Costa and C. Magalhaes: 
Existence results for perturbations of the p-Laplacian. Nonlinear Anal. TMA 24 (1995), 409–418. 
MR 1312776 
[9] C. De Coster: 
Pairs of positive solutions for the one-dimensional p-Laplacian. Nonlinear Anal. TMA 23 (1994), 669–681. 
MR 1297285 | 
Zbl 0813.34021 
[10] M. Del Pino, M. Elgueta and R. Manasevich: 
A homotopic deformation along p of a Leray-Shauder degree result and existence for $(|u^{\prime }|^{p-2}u^{\prime })^{\prime }+f(t,u) = 0$, $ u(0)=u(T)=0$, $p>1$. J. Differential Equations 80 (1989), 1–13. 
DOI 10.1016/0022-0396(89)90093-4 | 
MR 1003248 
[11] A. Friedman: 
Generalized heat transfer between solids and gases under nonlinear boundary conditions. J. Math. Mech. 8 (1959), 161–184. 
MR 0102345 | 
Zbl 0101.31102 
[12] Z. Guo: 
Boundary value problems for a class of quasilinear ordinary differential equations. Differential Integral Equations 6 (1993), 705–719. 
MR 1202567 
[13] A. El. Hachimi, J.-P. Gossez: 
A note on a nonresonance condition for a quasilinear elliptic problem. Nonlinear Anal. TMA 22 (1994), 229–236. 
MR 1258959 
[14] S. Hu and N. S. Papageorgiou: 
Handbook of Multivalued Analysis Volume I: Theory. Kluwer Academic Publishers, Dordrecht, 1997. 
MR 1485775 
[15] A. Ioffe and V. Tichomirov: 
Theory of Extremal Problems. North Holland, Amsterdam, 1979. 
MR 0528295 
[17] A. Kufner, O. John and S. Fučík: 
Function Spaces. Noordhoff, Leyden, The Netherlands, 1977. 
MR 0482102 
[18] P. Lindqvist: 
On the equation $\div (|Dx|^{p-2}Dx)+ \lambda |x|^{p-2}x = 0$. Proc. AMS vol. 109, 1991, pp. 157–164. 
MR 1007505 
[19] P. H. Rabinowitz: 
Some minimax theorems and applications to nonlinear partial differential equations. Nonlinear Analysis: A collection of papers of E. Rothe, L. Cesari, R. Kannan, H. F. Weinberger (eds.), Acad. Press, New York, 1978, pp. 161–177. 
MR 0501092 | 
Zbl 0466.58015 
[20] P. H. Rabinowitz: 
Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS, Regional Conference Series in Math, No 65, AMS, Providence, R. J., 1986. 
MR 0845785 | 
Zbl 0609.58002 
[21] R. Showalter: 
Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Math. Surveys, vol. 49, AMS, Providence, R. I., 1997. 
MR 1422252 | 
Zbl 0870.35004 
[23] E. Zeidler: 
Nonlinear Functional Analysis and its Applications II. Springer Verlag, New York, 1990. 
MR 0816732 | 
Zbl 0684.47029