Previous |  Up |  Next

Article

Title: Asymptotic properties of differential equations with advanced argument (English)
Author: Čermák, Jan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 50
Issue: 4
Year: 2000
Pages: 825-837
Summary lang: English
.
Category: math
.
Summary: The paper discusses the asymptotic properties of solutions of the scalar functional differential equation \[ y^{\prime }(x)=ay(\tau (x))+by(x),\qquad x\in [x_0,\infty ) \] of the advanced type. We show that, given a specific asymptotic behaviour, there is a (unique) solution $y(x)$ which behaves in this way. (English)
Keyword: functional differential equation
Keyword: functional (nondifferential) equation
Keyword: advanced argument
Keyword: asymptotic behaviour
MSC: 34K15
MSC: 34K25
MSC: 39B22
idZBL: Zbl 1079.34544
idMR: MR1792972
.
Date available: 2009-09-24T10:38:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127612
.
Reference: [1] J. Čermák: The asymptotic bounds of linear delay systems.J. Math. Anal. Appl. 225 (1998), 373–388. MR 1644331, 10.1006/jmaa.1998.6018
Reference: [2] J. Diblík: Asymptotic representation of solutions of equation $\dot{y}(t)=\beta (t)[y(t)-y(t-\tau (t))]$.J. Math. Anal. Appl. 217 (1998), 200–215. MR 1492085, 10.1006/jmaa.1997.5709
Reference: [3] J. K. Hale and S. M. Verduyn Lunel: Functional Differential Equations.Springer-Verlag, New York, 1993.
Reference: [4] M. L. Heard: Asymptotic behavior of solutions of the functional differential equation $x^{\prime }(t)=ax(t)+bx(t^{\alpha })$, $\alpha >1$.J. Math. Anal. Appl. 44 (1973), 745–757. Zbl 0289.34115, MR 0333405, 10.1016/0022-247X(73)90013-9
Reference: [5] M. L. Heard: A change of variables for functional differential equations.J. Differential Equations 18 (1975), 1–10. Zbl 0318.34069, MR 0387766, 10.1016/0022-0396(75)90076-5
Reference: [6] T. Kato and J. B. Mcleod: The functional differential equation $y^{\prime }(x)=ay(\lambda x)+by(x)$.Bull. Amer. Math. Soc. 77 (1971), 891–937. MR 0283338
Reference: [7] M. Kuczma, B. Choczewski and R. Ger: Iterative Functional Equations.Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1990. MR 1067720
Reference: [8] G. S. Ladde, V. Lakshmikantham and B. G. Zhang: Oscillation Theory of Differential Equations with Deviating Argument.Marcel Dekker, Inc., New York, 1987. MR 1017244
Reference: [9] F. Neuman: On transformations of differential equations and systems with deviating argument.Czechoslovak Math. J. 31(106) (1981), 87–90. Zbl 0463.34051, MR 0604115
Reference: [10] F. Neuman: Transformations and canonical forms of functional-differential equations.Proc. Roy. Soc. Edinburgh 115A (1990), 349–357. MR 1069527
Reference: [11] V. A. Staikos and P. Ch. Tsamatos: On the terminal value problem for differential equations with deviating arguments.Arch. Math. (Brno) (1985), 43–49. MR 0818306
.

Files

Files Size Format View
CzechMathJ_50-2000-4_10.pdf 360.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo