Previous |  Up |  Next

Article

Title: Signed total domination number of a graph (English)
Author: Zelinka, Bohdan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 225-229
Summary lang: English
.
Category: math
.
Summary: The signed total domination number of a graph is a certain variant of the domination number. If $v$ is a vertex of a graph $G$, then $N(v)$ is its oper neighbourhood, i.e. the set of all vertices adjacent to $v$ in $G$. A mapping $f: V(G) \rightarrow \lbrace -1, 1\rbrace $, where $V(G)$ is the vertex set of $G$, is called a signed total dominating function (STDF) on $G$, if $\sum _{x \in N(v)} f(x) \ge 1$ for each $v \in V(G)$. The minimum of values $\sum _{x \in V(G)} f(x)$, taken over all STDF’s of $G$, is called the signed total domination number of $G$ and denoted by $\gamma _{\mathrm st}(G)$. A theorem stating lower bounds for $\gamma _{\mathrm st}(G)$ is stated for the case of regular graphs. The values of this number are found for complete graphs, circuits, complete bipartite graphs and graphs on $n$-side prisms. At the end it is proved that $\gamma _{\mathrm st}(G)$ is not bounded from below in general. (English)
Keyword: signed total dominating function
Keyword: signed total domination number
Keyword: regular graph
Keyword: circuit
Keyword: complete graph
Keyword: complete bipartite graph
Keyword: Cartesian product of graphs
MSC: 05C35
MSC: 05C69
idZBL: Zbl 0977.05096
idMR: MR1844306
.
Date available: 2009-09-24T10:41:50Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127643
.
Reference: [1] J. E.Dunbar, S. T. Hedetniemi, M. A. Henning and P. J. Slater: Signed domination in graphs.Graph Theory, Combinatorics and Application, Proceedings 7th Internat. Conf. Combinatorics, Graph Theory, Applications, vol. 1, Y. Alavi, A. J. Schwenk (eds.), John Willey & Sons, Inc., 1995, pp. 311–322. MR 1405819
Reference: [2] T. W. Haynes, S. T. Hedetniemi and P. J. Slater: Fundamentals of Domination in Graphs.Marcel Dekker Inc., New York-Basel-Hong Kong, 1998. MR 1605684
.

Files

Files Size Format View
CzechMathJ_51-2001-2_1.pdf 282.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo