Previous |  Up |  Next

Article

Title: The all-paths transit function of a graph (English)
Author: Changat, Manoj
Author: Klavžar, Sandi
Author: Mulder, Henry Martyn
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 2
Year: 2001
Pages: 439-448
Summary lang: English
.
Category: math
.
Summary: A transit function $R$ on a set $V$ is a function $R\:V\times V\rightarrow 2^{V}$ satisfying the axioms $u\in R(u,v)$, $R(u,v)=R(v,u)$ and $R(u,u)=\lbrace u\rbrace $, for all $u,v \in V$. The all-paths transit function of a connected graph is characterized by transit axioms. (English)
Keyword: all-paths convexity
Keyword: transit function
Keyword: block graph
MSC: 05C12
MSC: 05C75
MSC: 05C99
idZBL: Zbl 0977.05135
idMR: MR1844322
.
Date available: 2009-09-24T10:44:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127659
.
Reference: [1] P.  Duchet: Convexity in combinatorial structures.Rend. Circ. Mat. Palermo  (2) Suppl. 14 (1987), 261–293. Zbl 0644.52001, MR 0920860
Reference: [2] P.  Duchet: Convex sets in graphs  II. Minimal path convexity.J.  Combin. Theory Ser.  B 44 (1988), 307–316. Zbl 0672.52001, MR 0941439, 10.1016/0095-8956(88)90039-1
Reference: [3] J.  Calder: Some elementary properties of interval convexities.J.  London Math. Soc. 3 (1971), 422–428. Zbl 0228.52001, MR 0288664, 10.1112/jlms/s2-3.3.422
Reference: [4] M.  Farber and R. E.  Jamison: Convexity in graphs and hypergraphs.SIAM J.  Algebraic Discrete Methods 7 (1986), 433–444. MR 0844046, 10.1137/0607049
Reference: [5] S.  Klavžar and H. M.  Mulder: Median graphs: characterizations, location theory and related structures.J.  Combin. Math. Combin. Comput. 30 (1999), 103–127. MR 1705337
Reference: [6] H. M.  Mulder: The Interval Function of a Graph.Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980. Zbl 0446.05039, MR 0605838
Reference: [7] H. M.  Mulder: Transit functions on graphs.In preparation. Zbl 1166.05019
Reference: [8] M. A.  Morgana and H. M.  Mulder: The induced path convexity, betweenness, and svelte graphs.Discrete Math (to appear). MR 1910118
Reference: [9] L.  Nebeský: A characterization of the interval function of a connected graph.Czechoslovak Math.  J. 44(119) (1994), 173–178. MR 1257943
Reference: [10] L.  Nebeský: Characterizing the interval function of a connected graph.Math. Bohem. 123(2) (1998), 137–144. MR 1673965
Reference: [11] E.  Sampathkumar: Convex sets in graphs.Indian J. Pure Appl. Math. 15 (1984), 1065–1071. MR 0765010
Reference: [12] M. L. J.  van de Vel: Theory of Convex Structures.North Holland, Amsterdam, 1993. MR 1234493
.

Files

Files Size Format View
CzechMathJ_51-2001-2_17.pdf 332.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo