Previous |  Up |  Next

Article

Title: Strong duals of projective limits of (LB)-spaces (English)
Author: Bonet, J.
Author: Dierolf, S.
Author: Wengenroth, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 2
Year: 2002
Pages: 295-307
Summary lang: English
.
Category: math
.
Summary: We investigate the problem when the strong dual of a projective limit of (LB)-spaces coincides with the inductive limit of the strong duals. It is well-known that the answer is affirmative for spectra of Banach spaces if the projective limit is a quasinormable Fréchet space. In that case, the spectrum satisfies a certain condition which is called “strong P-type”. We provide an example which shows that strong P-type in general does not imply that the strong dual of the projective limit is the inductive limit of the strong duals, but on the other hand we show that this is indeed true if one deals with projective spectra of retractive (LB)-spaces. Finally, we apply our results to a question of Grothendieck about biduals of (LF)-spaces. (English)
Keyword: derived projective limit functor
Keyword: Retakh’s condition
Keyword: weakly acyclic (LF)-spaces
MSC: 46A08
MSC: 46A13
MSC: 46A20
MSC: 46M15
idZBL: Zbl 1075.46501
idMR: MR1905436
.
Date available: 2009-09-24T10:50:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127717
.
Reference: [1] K. D.Bierstedt and J.  Bonet: Biduality in (LF)-spaces.Preprint 1998. MR 1902422
Reference: [2] J. Bonet and S.  Dierolf: A note on the biduals of strict (LF)-spaces.Results Math. 13 (1988), 23–32. MR 0928138, 10.1007/BF03323393
Reference: [3] J. Bonet and S. Dierolf: On distinguished Fréchet spaces.In: Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 201–214. MR 1150747
Reference: [4] J. Bonet and P.  Domański: Real analytic curves in Fréchet spaces and their duals.Monatshefte Math. 126 (1998), 13–36. MR 1633255, 10.1007/BF01312453
Reference: [5] R. W. Braun, R. Meise and D.  Vogt: Applications of the projective limit functor to convolutions and partial differential equations.In: Advances in the Theory of Fréchet Spaces, T. Terzioǧlu (ed.), Kluwer, NATO ASF Ser.  C, Vol. 287, Dordrecht, 1989, pp. 29–46. MR 1083556
Reference: [6] R. W. Braun and D.  Vogt: A sufficient condition for $\mathop {\mathrm Proj}^1$ = 0.Michigan Math. J. 44 (1996), 149–156. MR 1439674
Reference: [7] S. Dierolf, L. Frerick, E.  Mangino and J. Wengenroth: Examples on projective spectra of (LB)-spaces.Manuscripta Math. 88 (1995), 171–175. MR 1354103, 10.1007/BF02567814
Reference: [8] L. Frerick and J.  Wengenroth: A sufficient condition for vanishing of the derived projective limit functor.Archiv Math. (Basel) 67 (1996), 296–301. MR 1407332, 10.1007/BF01197593
Reference: [9] A. Grothendieck: Sur les espace  (F) et  (DF).Summa Brasil. Math. 3 (1954), 57–122. MR 0075542
Reference: [10] H. Komatsu: Ultradistributions I. Structure theorems and a characterization.J.  Fac. Sci. Univ. Tokio 20 (1973), 25–105. Zbl 0258.46039, MR 0320743
Reference: [11] R.  Meise and D.  Vogt: Introduction to Functional Analysis.Clavendon Press, Oxford, 1997. MR 1483073
Reference: [12] V. P.  Palamodov: The projective limit functor in the category of linear topological spaces.Mat. Sbornik 75 (1968), 567–603. (Russian) Zbl 0175.41801, MR 0223851
Reference: [13] V. P. Palamodov: Homological methods in the theory of locally convex spaces.Uspekhi Mat. Nauk 26 (1971), 3–65. (Russian) Zbl 0247.46070, MR 0293365
Reference: [14] P.  Pérez Carreras and J. Bonet: Barrelled Locally Convex Spaces.North-Holland Mathematics Studies, Vol. 131, 1987. MR 0880207
Reference: [15] D.  Vogt: On the functors $\mathop {\mathrm Ext}^1(E,F)$ for Fréchet spaces.Studia Math. 85 (1987), 163–197. MR 0887320, 10.4064/sm-85-2-163-197
Reference: [16] D.  Vogt: Lectures on projective spectra of (DF)-spaces.Seminar lectures, AG Funktionalanalysis Düsseldorf/Wuppertal (1987).
Reference: [17] D.  Vogt: Topics on projective spectra of (LB)-spaces.In: Advances in the Theory of Fréchet Spaces, T.  Terzioǧlu (ed.), Kluwer, NATO ASF Ser. C, Vol. 287, Dordrecht, 1989, pp. 11–27. Zbl 0711.46006, MR 1083555
Reference: [18] D.  Vogt: Regularity properties of (LF)-spaces.In: Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 57–84. Zbl 0779.46005, MR 1150738
Reference: [19] J. Wengenroth: Acyclic inductive spectra of Fréchet spaces.Studia Math. 120 (1996), 247–258. Zbl 0863.46002, MR 1410451, 10.4064/sm-120-3-247-258
Reference: [20] J. Wengenroth: A new characterization of $\mathop {\mathrm Proj}^1 {\mathcal X}=0$ for countable spectra of (LB)-spaces.Proc. Amer. Math. Soc. 127 (1999), 737–744. MR 1468208, 10.1090/S0002-9939-99-04559-1
.

Files

Files Size Format View
CzechMathJ_52-2002-2_5.pdf 388.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo