Title:
|
On multiplicities of simple subquotients in generalized Verma modules (English) |
Author:
|
Khomenko, Alexandre |
Author:
|
Mazorchuk, Volodymyr |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
337-343 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We reduce the problem on multiplicities of simple subquotients in an $\alpha $-stratified generalized Verma module to the analogous problem for classical Verma modules. (English) |
Keyword:
|
simple Lie algebra |
Keyword:
|
Verma module |
Keyword:
|
multiplicity |
MSC:
|
17B10 |
MSC:
|
22E47 |
idZBL:
|
Zbl 1008.17004 |
idMR:
|
MR1905441 |
. |
Date available:
|
2009-09-24T10:51:35Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127722 |
. |
Reference:
|
[1] J. L. Brylinski and M. Kashiwara: Kazhdan-Lusztig conjecture and holonomic systems.Inv. Math. 64 (1981), 387–410. MR 0632980, 10.1007/BF01389272 |
Reference:
|
[2] L. Casian and D. Collingwood: The Kazhdan-Lusztig conjecture for generalized Verma modules.Math. Z. 195 (1987), 581–600. MR 0900346, 10.1007/BF01166705 |
Reference:
|
[3] A. J. Coleman and V. M. Futorny: Stratified L-modules.J. Algebra 163 (1994), 219–234. MR 1257315 |
Reference:
|
[4] J. Dixmier: Algebres Enveloppantes.Gauthier-Villars, Paris, 1974. Zbl 0308.17007, MR 0498737 |
Reference:
|
[5] V. Futorny and V. Mazorchuk: Structure of $\alpha $-stratified modules for finite-dimensional Lie algebras.J. Algebra I, 183 (1996), 456–482. MR 1399036, 10.1006/jabr.1996.0229 |
Reference:
|
[6] A. Khomenko and V. Mazorchuk: Generalized Verma modules over the Lie algebra of type $G_2$.Comm. Algebra 27 (1999), 777–783. MR 1671979, 10.1080/00927879908826460 |
Reference:
|
[7] O. Mathieu: Classification of irreducible weight modules.Ann. Inst. Fourier (Grenoble) 50 (2000), 537–592. Zbl 0962.17002, MR 1775361, 10.5802/aif.1765 |
Reference:
|
[8] V. S. Mazorchuk: The structure of an $\alpha $-stratified generalized Verma module over Lie Algebra $\mathop {\mathrm sl}(n,{\mathbb{C}})$.Manuscripta Math. 88 (1995), 59–72. MR 1348790, 10.1007/BF02567805 |
Reference:
|
[9] A. Rocha-Caridi: Splitting criteria for $G$-modules induced from a parabolic and a Bernstein-Gelfand-Gelfand resolution of a finite-dimensional, irreducible $G$-module.Trans. Amer. Math. Soc. 262 (1980), 335–366. MR 0586721 |
. |