Previous |  Up |  Next

Article

Title: On multiplicities of simple subquotients in generalized Verma modules (English)
Author: Khomenko, Alexandre
Author: Mazorchuk, Volodymyr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 2
Year: 2002
Pages: 337-343
Summary lang: English
.
Category: math
.
Summary: We reduce the problem on multiplicities of simple subquotients in an $\alpha $-stratified generalized Verma module to the analogous problem for classical Verma modules. (English)
Keyword: simple Lie algebra
Keyword: Verma module
Keyword: multiplicity
MSC: 17B10
MSC: 22E47
idZBL: Zbl 1008.17004
idMR: MR1905441
.
Date available: 2009-09-24T10:51:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127722
.
Reference: [1] J. L. Brylinski and M. Kashiwara: Kazhdan-Lusztig conjecture and holonomic systems.Inv. Math. 64 (1981), 387–410. MR 0632980, 10.1007/BF01389272
Reference: [2] L. Casian and D. Collingwood: The Kazhdan-Lusztig conjecture for generalized Verma modules.Math. Z. 195 (1987), 581–600. MR 0900346, 10.1007/BF01166705
Reference: [3] A. J. Coleman and V. M. Futorny: Stratified L-modules.J. Algebra 163 (1994), 219–234. MR 1257315
Reference: [4] J. Dixmier: Algebres Enveloppantes.Gauthier-Villars, Paris, 1974. Zbl 0308.17007, MR 0498737
Reference: [5] V. Futorny and V. Mazorchuk: Structure of $\alpha $-stratified modules for finite-dimensional Lie algebras.J. Algebra I, 183 (1996), 456–482. MR 1399036, 10.1006/jabr.1996.0229
Reference: [6] A. Khomenko and V. Mazorchuk: Generalized Verma modules over the Lie algebra of type $G_2$.Comm. Algebra 27 (1999), 777–783. MR 1671979, 10.1080/00927879908826460
Reference: [7] O. Mathieu: Classification of irreducible weight modules.Ann. Inst. Fourier (Grenoble) 50 (2000), 537–592. Zbl 0962.17002, MR 1775361, 10.5802/aif.1765
Reference: [8] V. S. Mazorchuk: The structure of an $\alpha $-stratified generalized Verma module over Lie Algebra $\mathop {\mathrm sl}(n,{\mathbb{C}})$.Manuscripta Math. 88 (1995), 59–72. MR 1348790, 10.1007/BF02567805
Reference: [9] A. Rocha-Caridi: Splitting criteria for $G$-modules induced from a parabolic and a Bernstein-Gelfand-Gelfand resolution of a finite-dimensional, irreducible $G$-module.Trans. Amer. Math. Soc. 262 (1980), 335–366. MR 0586721
.

Files

Files Size Format View
CzechMathJ_52-2002-2_10.pdf 343.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo