Previous |  Up |  Next

Article

Title: The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals (English)
Author: Federson, Márcia
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 2
Year: 2002
Pages: 429-437
Summary lang: English
.
Category: math
.
Summary: We prove two versions of the Monotone Convergence Theorem for the vector integral of Kurzweil, $\int _R{\mathrm d}\alpha (t) f(t)$, where $R$ is a compact interval of $\mathbb{R}^n$, $\alpha $ and $f$ are functions with values on $L(Z,W)$ and $Z$ respectively, and $Z$ and $W$ are monotone ordered normed spaces. Analogous results can be obtained for the Kurzweil vector integral, $\int _R\alpha (t)\mathrm{d}f(t)$, as well as to unbounded intervals $R$. (English)
Keyword: Monotone Convergence Theorem
Keyword: Kurzweil vector integral
Keyword: ordered normed spaces
MSC: 26A39
MSC: 26A42
MSC: 28B05
idZBL: Zbl 1022.28003
idMR: MR1905449
.
Date available: 2009-09-24T10:52:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127730
.
Reference: [1] G. Birkhoff: Integration of functions on Banach spaces.Trans. Amer. Math. Soc. 38 (1935), 357–378. MR 1501815
Reference: [2] M. M.  Day: Normed Linear Spaces.Springer-Verlag, 1973. Zbl 0268.46013, MR 0344849
Reference: [3] M.  Federson: The Fundamental Theorem of Calculus for the multidimensional Banach space-valued Henstock vector integral.Real Anal. Exchange 25 (2000), 469–480. MR 1758903
Reference: [4] R.  Henstock: A Riemann-type integral of Lebesgue power.Canad. J.  Math. 20 (1968), 79–87. Zbl 0171.01804, MR 0219675, 10.4153/CJM-1968-010-5
Reference: [5] C. S. Hönig: On a remarkable differential characterization of the functions that are Kurzweil-Henstock integrals.Seminário Brasileiro de Análise 33 (1991), 331–341.
Reference: [6] G. J. Murphy: $C^{*}$-Algebras and Operator Theory.Academic Press, 1990. Zbl 0714.46041, MR 1074574
Reference: [7] Š.  Schwabik: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425–447. Zbl 0879.28021, MR 1428144
.

Files

Files Size Format View
CzechMathJ_52-2002-2_18.pdf 343.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo