Previous |  Up |  Next

Article

Title: An analogue of Montel’s theorem for some classes of rational functions (English)
Author: Kovacheva, R. K.
Author: Lawrynowicz, J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 3
Year: 2002
Pages: 483-498
Summary lang: English
.
Category: math
.
Summary: For sequences of rational functions, analytic in some domain, a theorem of Montel’s type is proved. As an application, sequences of rational functions of the best $L_p$-approximation with an unbounded number of finite poles are considered. (English)
Keyword: normal families
Keyword: best $L_p$-approximation
MSC: 30B40
MSC: 30D45
MSC: 30E10
MSC: 41A20
MSC: 41A50
idZBL: Zbl 1011.30001
idMR: MR1923255
.
Date available: 2009-09-24T10:53:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127737
.
Reference: [1] S. N.  Bernstein: On the distribution of zeros of polynomials to a continuous function positive on a real interval.Complex Works, Vol. I, Acad. Nauk UdSSR, 1952, pp. 443–451. (Russian)
Reference: [2] G. Baker, Jr., and P.  Graves-Morris: Padé Approximants. Encyclopedia of Mathematics and Its Applications, Part I, Volume 13, 14.Addison-Wesley Publishing Company, Massachusetts, 1981.
Reference: [3] H.-P. Blatt, E. B. Saff and M. Simkani: Jentzsch-Szegő type theorems for the zeros of best approximants.J.  London Math. Soc. 38 (1988), 307–316. MR 0966302
Reference: [4] H.-P.  Blatt, P. Isenles and E. B.  Saff: Remarks on behavior of zeros of polynomials of best approximating polynomials and rational functions.Algorithmus for Approximation, J. C. Mason, U. C. Cox (eds.), Inst. Math. Conf. Ser., New Ser. 10, Oxford Press, Oxford, 1987, pp. 437–445.
Reference: [5] D. Braess: On a conjecture of Meinardus on rational approximation of $e^x$, II.J. Approx. Theory 40 (1984), 375–379. MR 0740650, 10.1016/0021-9045(84)90012-1
Reference: [6] J. Gilewicz and W.  Pleśniak: Distribution of zeros of sequences of polynomials.Ann. Polon. Math 30 (1993), 165–177. MR 1233780
Reference: [7] G. M. Golusin: Geometric Theory of Functions of a Complex Variable.Nauka, Moscow, 1966. (Russian)
Reference: [8] A. A. Gonchar: On uniform convergence of diagonal Padé approximant..
Reference: [9] A. A. Gonchar: A local conjecture for the uniqueness of analytic functions.Matem. Sbornik 89 (1972), 148–164. (Russian)
Reference: [10] H. Gonska and R. K.  Kovacheva: An extension of Montel’s theorems to some rational approximating sequences.Bull. Soc. Lettres Lodz 21 (1996), 73–86. MR 1475304
Reference: [11] R. Grothmann and E. B. Saff: On the behavior of zeros and poles of best uniform polynomial and rational approximation.Nonlinear Numerical Methods and Rational Approximations, D.  Reidel Publ.  Co., Dordrecht, 1988, pp. 57–77. MR 1005351
Reference: [12] R. K.  Kovacheva: On the behaviour of Chebyshev rational approximants with a fixed number of poles.Math. Balkanica 3 (1989), 244–256. MR 1048047
Reference: [13] R. K.  Kovacheva: Diagonal rational Chebyshev approximants and holomorphic continuation of functions.Analysis 10 (1990), 147–161. Zbl 0734.41019, MR 1074829, 10.1524/anly.1990.10.23.147
Reference: [14] R. K. Kovacheva: An analogue of Montel’s theorem to rational approximating sequences.Comp. Ren. Acad. Bulg. Scien. 50 (1997), 9–12. Zbl 0927.30026, MR 1630480
Reference: [15] A. Kroo and J. Swetits: On density of interpolation points, a Kadec type theorem and Saff’s principle of contamination in $L_p$-approximation.Constr. Approx. 8 (1992), 87–103. MR 1142696, 10.1007/BF01208908
Reference: [16] I. P.  Natanson: The Theory of Analytic Functions.Nauka, Moscow, 1950. (Russian)
Reference: [17] I. I. Privalov: Boundary Oroperties of Analytic Functions.Nauka, Moscow, 1950. (Russian)
Reference: [18] E. B. Saff and H. Stahl: Ray sequences of best rational approximants for $|x|^{\alpha }$.Canad. J.  Math. 49 (1997), 1034–1065. MR 1604134, 10.4153/CJM-1997-052-3
Reference: [19] H. Stahl: Best uniform rational approximation of  $|x|$ on $[-1, 1]$.Mat. Sb. 8 (1983), 85–118. MR 1187250
Reference: [20] A. F. Timan: Approximation of Real-Vaued Functions.GIFMAT, 1960. (Russian)
Reference: [21] J. L.  Walsh: Interpolation and approximation by rational functions in the complex plane.AMS Colloquium Publications, Volume XX, 1960.
Reference: [22] J. L. Walsh: Overconvergence, degree of convergence and zeros of sequences of analytic functions.Duke Math.  J. 13 (1946), 195–235. Zbl 0063.08149, MR 0017797
.

Files

Files Size Format View
CzechMathJ_52-2002-3_4.pdf 434.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo