Previous |  Up |  Next

Article

Title: A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals (English)
Author: Fong, C. K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 3
Year: 2002
Pages: 531-536
Summary lang: English
.
Category: math
.
Summary: We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces. (English)
Keyword: Pettis integrability
Keyword: HK-integrals
Keyword: Saks-Henstock’s property
MSC: 26A39
MSC: 28A75
MSC: 28B05
MSC: 28E50
MSC: 46G10
idZBL: Zbl 1011.28006
idMR: MR1923258
.
Date available: 2009-09-24T10:53:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127740
.
Reference: [1] R. G.  Bartle: Return to the Riemann integral.Amer. Math. Monthly 103 (1996), 625–632. Zbl 0884.26007, MR 1413583, 10.2307/2974874
Reference: [2] M. M.  Day: Normed Linear Spaces.Academic Press Inc., New York, 1962. Zbl 0100.10802, MR 0145316
Reference: [3] J.  Diestel: Sequences and Series in Banach Spaces.Springer-Verlag, New York, 1984. MR 0737004
Reference: [4] J.  Diestel and J. J.  Uhl, Jr.: Vector Measures. Mathematical Surveys, No.  15.Amer. Math. Soc., Providence, 1997. MR 0453964
Reference: [5] R. Henstock: The General Theory of Integration.Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656
Reference: [6] W. F.  Pfeffer: The Riemann Approach to Integration. Cambridge Tracts in Mathematics, No.  109.Cambridge University Press, Cambridge, 1993. MR 1268404
Reference: [7] E. M.  Stein: Singular Integrals and Differentiability Properties of Functions.Princeton University Press, Princeton, 1970. Zbl 0207.13501, MR 0290095
Reference: [8] Š.  Schwabik: Abstract Bochner and McShane Integrals.Ann. Math. Sil. 1564(10) (1996), 21–56. Zbl 0868.28005, MR 1399609
.

Files

Files Size Format View
CzechMathJ_52-2002-3_7.pdf 306.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo