Title:
|
A family of noetherian rings with their finite length modules under control (English) |
Author:
|
Schmidmeier, Markus |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
52 |
Issue:
|
3 |
Year:
|
2002 |
Pages:
|
545-552 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate the category $\text{mod}\Lambda $ of finite length modules over the ring $\Lambda =A\otimes _k\Sigma $, where $\Sigma $ is a V-ring, i.e. a ring for which every simple module is injective, $k$ a subfield of its centre and $A$ an elementary $k$-algebra. Each simple module $E_j$ gives rise to a quasiprogenerator $P_j=A\otimes E_j$. By a result of K. Fuller, $P_j$ induces a category equivalence from which we deduce that $\text{mod}\Lambda \simeq \coprod _jbad hbox P_j$. As a consequence we can (1) construct for each elementary $k$-algebra $A$ over a finite field $k$ a nonartinian noetherian ring $\Lambda $ such that $\text{mod}A\simeq \text{mod}\Lambda $, (2) find twisted versions $\Lambda $ of algebras of wild representation type such that $\Lambda $ itself is of finite or tame representation type (in mod), (3) describe for certain rings $\Lambda $ the minimal almost split morphisms in $\text{mod} \Lambda $ and observe that almost all of these maps are not almost split in $\text{Mod}\Lambda $. (English) |
Keyword:
|
V-ring |
Keyword:
|
progenerator |
Keyword:
|
almost split morphisms |
MSC:
|
16D50 |
MSC:
|
16D60 |
MSC:
|
16D90 |
MSC:
|
16G10 |
MSC:
|
16G20 |
MSC:
|
16G60 |
MSC:
|
16G70 |
MSC:
|
16P40 |
idZBL:
|
Zbl 1014.16014 |
idMR:
|
MR1923260 |
. |
Date available:
|
2009-09-24T10:54:00Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127742 |
. |
Reference:
|
[1] M. Auslander: A survey of existence theorems for almost split sequences.Representation theory of algebras. Proc. Symp. Durham 1985, London Math. Soc. Lecture Notes Series Vol. 116, Cambridge, 1986, pp. 81–89. Zbl 0606.16020, MR 0897320 |
Reference:
|
[2] M. Auslander, I. Reiten and S. O. Smalø: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics Vol. 36.Cambridge, 1995. MR 1314422 |
Reference:
|
[3] J. H. Cozzens: Homological properties of the ring of differential polynomials.Bull. Amer. Math. Soc. 76 (1970), 75–79. Zbl 0213.04501, MR 0258886, 10.1090/S0002-9904-1970-12370-9 |
Reference:
|
[4] C. Faith: Algebra: Rings, Modules and Categories I.Springer Grundlehren Vol. 190, Berlin, Heidelberg, New York, 1973. Zbl 0266.16001, MR 0366960 |
Reference:
|
[5] K. R. Fuller: Density and equivalences.J. Algebra 29 (1974), 528–550. MR 0374192 |
Reference:
|
[6] K. R. Fuller: $*$-modules over ring extensions.Comm. Algebra 25 (1997), 2839–2860. MR 1458733, 10.1080/00927879708826026 |
Reference:
|
[7] Chr. Kassel: Quantum Groups. Graduate Texts in Mathematics Vol. 155.Springer, Berlin, Heidelberg, New York, 1995. MR 1321145 |
Reference:
|
[8] B. L. Osofsky: On twisted polynomial rings.J. Algebra 18 (1971), 597–607. Zbl 0223.16004, MR 0280521 |
Reference:
|
[9] C. M. Ringel: The representation type of local algebras.Proc. Conf. Ottawa 1974, Lect. Notes Math. Vol. 488, 1975, pp. 282–305. Zbl 0348.16013, MR 0382356 |
Reference:
|
[10] R. Wisbauer: Grundlagen der Modul- und Ringtheorie.Verlag Reinhard Fischer, München, 1988. Zbl 0657.16001, MR 0969132 |
Reference:
|
[11] W. Zimmermann: Auslander-Reiten sequences over artinian rings.J. Algebra 119 (1988), 366–92. Zbl 0661.16024, MR 0971140, 10.1016/0021-8693(88)90066-X |
Reference:
|
[12] W. Zimmermann: Auslander-Reiten sequences over derivation polynomial rings.J. Pure Appl. Algebra 74 (1991), 317–32. Zbl 0742.16008, MR 1135035, 10.1016/0022-4049(91)90120-Q |
. |