Previous |  Up |  Next

Article

Title: A family of noetherian rings with their finite length modules under control (English)
Author: Schmidmeier, Markus
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 3
Year: 2002
Pages: 545-552
Summary lang: English
.
Category: math
.
Summary: We investigate the category $\text{mod}\Lambda $ of finite length modules over the ring $\Lambda =A\otimes _k\Sigma $, where $\Sigma $ is a V-ring, i.e. a ring for which every simple module is injective, $k$ a subfield of its centre and $A$ an elementary $k$-algebra. Each simple module $E_j$ gives rise to a quasiprogenerator $P_j=A\otimes E_j$. By a result of K. Fuller, $P_j$ induces a category equivalence from which we deduce that $\text{mod}\Lambda \simeq \coprod _jbad hbox P_j$. As a consequence we can (1) construct for each elementary $k$-algebra $A$ over a finite field $k$ a nonartinian noetherian ring $\Lambda $ such that $\text{mod}A\simeq \text{mod}\Lambda $, (2) find twisted versions $\Lambda $ of algebras of wild representation type such that $\Lambda $ itself is of finite or tame representation type (in mod), (3) describe for certain rings $\Lambda $ the minimal almost split morphisms in $\text{mod} \Lambda $ and observe that almost all of these maps are not almost split in $\text{Mod}\Lambda $. (English)
Keyword: V-ring
Keyword: progenerator
Keyword: almost split morphisms
MSC: 16D50
MSC: 16D60
MSC: 16D90
MSC: 16G10
MSC: 16G20
MSC: 16G60
MSC: 16G70
MSC: 16P40
idZBL: Zbl 1014.16014
idMR: MR1923260
.
Date available: 2009-09-24T10:54:00Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127742
.
Reference: [1] M. Auslander: A survey of existence theorems for almost split sequences.Representation theory of algebras. Proc. Symp. Durham  1985, London Math. Soc. Lecture Notes Series Vol.  116, Cambridge, 1986, pp. 81–89. Zbl 0606.16020, MR 0897320
Reference: [2] M. Auslander, I. Reiten and S. O. Smalø: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics Vol.  36.Cambridge, 1995. MR 1314422
Reference: [3] J. H. Cozzens: Homological properties of the ring of differential polynomials.Bull. Amer. Math. Soc. 76 (1970), 75–79. Zbl 0213.04501, MR 0258886, 10.1090/S0002-9904-1970-12370-9
Reference: [4] C. Faith: Algebra: Rings, Modules and Categories I.Springer Grundlehren Vol. 190, Berlin, Heidelberg, New York, 1973. Zbl 0266.16001, MR 0366960
Reference: [5] K. R. Fuller: Density and equivalences.J. Algebra 29 (1974), 528–550. MR 0374192
Reference: [6] K. R. Fuller: $*$-modules over ring extensions.Comm. Algebra 25 (1997), 2839–2860. MR 1458733, 10.1080/00927879708826026
Reference: [7] Chr. Kassel: Quantum Groups. Graduate Texts in Mathematics Vol.  155.Springer, Berlin, Heidelberg, New York, 1995. MR 1321145
Reference: [8] B. L. Osofsky: On twisted polynomial rings.J. Algebra 18 (1971), 597–607. Zbl 0223.16004, MR 0280521
Reference: [9] C. M. Ringel: The representation type of local algebras.Proc. Conf. Ottawa  1974, Lect. Notes Math. Vol. 488, 1975, pp. 282–305. Zbl 0348.16013, MR 0382356
Reference: [10] R. Wisbauer: Grundlagen der Modul- und Ringtheorie.Verlag Reinhard Fischer, München, 1988. Zbl 0657.16001, MR 0969132
Reference: [11] W. Zimmermann: Auslander-Reiten sequences over artinian rings.J.  Algebra 119 (1988), 366–92. Zbl 0661.16024, MR 0971140, 10.1016/0021-8693(88)90066-X
Reference: [12] W. Zimmermann: Auslander-Reiten sequences over derivation polynomial rings.J. Pure Appl. Algebra 74 (1991), 317–32. Zbl 0742.16008, MR 1135035, 10.1016/0022-4049(91)90120-Q
.

Files

Files Size Format View
CzechMathJ_52-2002-3_9.pdf 339.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo