Previous |  Up |  Next

Article

Title: On the existence of solutions for some nondegenerate nonlinear wave equations of Kirchhoff type (English)
Author: Park, Jong Yeoul
Author: Bae, Jeong Ja
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 4
Year: 2002
Pages: 781-795
Summary lang: English
.
Category: math
.
Summary: Let $\Omega $ be a bounded domain in ${\mathbb{R}}^n$ with a smooth boundary $\Gamma $. In this work we study the existence of solutions for the following boundary value problem: \[ \frac{\partial ^2 y}{\partial t^2}-M\biggl (\int _\Omega |\nabla y|^2\mathrm{d}x\biggr ) \Delta y -\frac{\partial }{\partial t}\Delta y=f(y) \quad \text{in} Q=\Omega \times (0,\infty ),.1 y=0 \quad \text{in} \Sigma _1=\Gamma _{\!1} \times (0,\infty ), M\biggl (\int _\Omega |\nabla y|^2\mathrm{d}x\biggr ) \frac{\partial y}{\partial \nu } +\frac{\partial }{\partial t}\Bigl (\frac{\partial y}{\partial \nu }\Bigr )=g \quad \text{in} \Sigma _0=\Gamma _{\!0} \times (0,\infty ), y(0)=y_0,\quad \frac{\partial y}{\partial t}\,(0)=y_1 \quad \text{in} \quad \Omega , \qquad \mathrm{(1)}\] where $M$ is a $C^1$-function such that $M(\lambda ) \ge \lambda _0 >0$ for every $\lambda \ge 0$ and $f(y)=|y|^\alpha y$ for $\alpha \ge 0$. (English)
Keyword: existence and uniqueness
Keyword: Galerkin method
Keyword: nondegenerate wave equation
MSC: 35D05
MSC: 35L15
MSC: 35L20
MSC: 35L70
MSC: 35L75
MSC: 35L80
MSC: 65M60
idZBL: Zbl 1011.35096
idMR: MR1940059
.
Date available: 2009-09-24T10:56:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127764
.
Reference: [1] M. M.  Cavalcanti, V. N.  Domingos Cavalcanti, J. S.  Prates Filho and J. A.  Soriano: Existence and exponential decay for a Kirchhoff-Carrier model with viscosity.J.  Math. Anal. Appl. 226 (1998), 40–60. MR 1646453, 10.1006/jmaa.1998.6057
Reference: [2] R. Ikehata: On the existence of global solutions for some nonlinear hyperbolic equations with Neumann conditions.TRU Math. 24 (1988), 1–17. Zbl 0707.35094, MR 0999375
Reference: [3] J. L.  Lions: Quelques méthode de résolution des probléme aux limites nonlinéaire.Dunod Gauthier–Villars, Paris (1969). MR 0259693
Reference: [4] T.  Matsuyama and R.  Ikehata: On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms.J.  Math. Anal. Appl. 204 (1996), 729–753. MR 1422769, 10.1006/jmaa.1996.0464
Reference: [5] M.  Nakao: Asymptotic stability of the bounded or almost periodic solutions of the wave equations with nonlinear damping terms.J.  Math. Anal. Appl. 58 (1977), 336–343. MR 0437890, 10.1016/0022-247X(77)90211-6
Reference: [6] K. Narasimha: Nonlinear vibration of an elastic string.J.  Sound Vibration 8 (1968), 134–146. 10.1016/0022-460X(68)90200-9
Reference: [7] K.  Nishihara and Y.  Yamada: On global solutions of some degenerate quasilinear hyperbolic equation with dissipative damping terms.Funkcial. Ekvac. 33 (1990), 151–159. MR 1065473
Reference: [8] K.  Ono: Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings.J.  Differential Equations 137 (1997), 273–301. Zbl 0879.35110, MR 1456598, 10.1006/jdeq.1997.3263
.

Files

Files Size Format View
CzechMathJ_52-2002-4_11.pdf 361.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo