Previous |  Up |  Next

Article

Title: On a two-point boundary value problem for second order singular equations (English)
Author: Lomtatidze, A.
Author: Torres, P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 19-43
Summary lang: English
.
Category: math
.
Summary: The problem on the existence of a positive in the interval $\mathopen ]a,b\mathclose [$ solution of the boundary value problem \[ u^{\prime \prime }=f(t,u)+g(t,u)u^{\prime };\quad u(a+)=0, \quad u(b-)=0 \] is considered, where the functions $f$ and $g\:\mathopen ]a,b\mathclose [\times \mathopen ]0,+\infty \mathclose [ \rightarrow \mathbb R$ satisfy the local Carathéodory conditions. The possibility for the functions $f$ and $g$ to have singularities in the first argument (for $t=a$ and $t=b$) and in the phase variable (for $u=0$) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established. (English)
Keyword: second order singular equation
Keyword: two-point boundary value problem
Keyword: solvability
MSC: 34B10
MSC: 34B16
MSC: 34B18
idZBL: Zbl 1023.34011
idMR: MR1961996
.
Date available: 2009-09-24T10:58:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127778
.
Reference: [1] J. A.  Ackroyd: On the laminar compressible boundary layer with stationary origin on a moving flat wall.Proc. Cambridge Phil. Soc. 63 (1967), 871–888. Zbl 0166.45804
Reference: [2] R. P.  Agarwal and D.  O’Regan: Singular boundary value problems for superlinear second order ordinary and delay differential equations.J.  Differential Equations 130 (1996), 333–355. MR 1410892, 10.1006/jdeq.1996.0147
Reference: [3] J. E. Bouillet and S. M.  Gomes: An equation with singular nonlinearity related to diffusion problems in one dimension.Quart. Appl. Math. 42 (1985), 395–402. MR 0766876, 10.1090/qam/766876
Reference: [4] J. V.  Baxley: A singular nonlinear boundary value problem: membrane response of a spherical cap.SIAM J.  Appl. Math. 48 (1988), 497–505. Zbl 0642.34014, MR 0941097, 10.1137/0148028
Reference: [5] L. E.  Bobisud, D.  O’Regan and W. D.  Royalty: Solvability of some nonlinear boundary value problems.Nonlinear Anal. 12 (1988), 855–869. MR 0960631, 10.1016/0362-546X(88)90070-3
Reference: [6] A. J.  Callegary and M. B.  Friedman: An analytic solution of a nonlinear singular boundary value problem in the theory of viscous fluids.J.  Math. Anal. Appl. 21 (1968), 510–529. MR 0224331, 10.1016/0022-247X(68)90260-6
Reference: [7] A. J.  Callegary and A.  Nachman: Some singular nonlinear differential equations arising in boundary layer theory.J.  Math. Anal. Appl. 64 (1978), 96–105. MR 0478973, 10.1016/0022-247X(78)90022-7
Reference: [8] A. J.  Callegary and A.  Nachman: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids.SIAM J.  Appl. Math. 38 (1980), 275–281. MR 0564014, 10.1137/0138024
Reference: [9] D. R.  Dunninger and J. C.  Kurtz: A priori bounds and existence of positive solutions for singular nonlinear boundary value problems.SIAM J.  Math. Anal. 17 (1986), 595–609. MR 0838243, 10.1137/0517044
Reference: [10] J. A.  Gatika, V.  Oliker and P.  Waltman: Singular nonlinear boundary value problems for second order ordinary differential equations.J.  Differential Equations 79 (1989), 62–78. MR 0997609, 10.1016/0022-0396(89)90113-7
Reference: [11] Z.  Guo: Solvability of some singular nonlinear boundary value problems and existence of positive radial solutions of some nonlinear elliptic problems.Nonlinear Anal. 16 (1991), 781–790. Zbl 0737.35024, MR 1097131, 10.1016/0362-546X(91)90083-D
Reference: [12] J.  Janus and A.  Myjak: A generalized Emden-Fowler equation with a negative exponent.Nonlinear Anal. 23 (1994), 953–970. MR 1304238, 10.1016/0362-546X(94)90193-7
Reference: [13] P.  Habets and F.  Zanolin: Upper and lower solutions for a generalized Emden–Fowler equation.J.  Math. Anal. Appl. 181 (1994), 684–700. MR 1264540, 10.1006/jmaa.1994.1052
Reference: [14] P.  Habets and F.  Zanolin: Positive solutions for a class of singular boundary value problems.Boll. Un. Mat. Ital.  A 9 (1995), 273–286. MR 1336236
Reference: [15] I. T.  Kiguradze: On some singular boundary value problems for nonlinear differential equations of the second order.Differentsial’nye Uravneniya 4 (1968), 1753–1773. (Russian) MR 0245893
Reference: [16] I.  T.  Kiguradze and A. G.  Lomtatidze: On certain boundary value problems for second order linear ordinary differential equations with singularities.J.  Math. Anal. Appl. 101 (1984), 325–347. MR 0748576, 10.1016/0022-247X(84)90107-0
Reference: [17] I. T.  Kiguradze and B. L.  Shekhter: Singular boundary value problems for second order ordinary differential equations.In: Curent Problems in Mathematics: Newest Results, Vol. 3, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987, pp. 3-103. MR 0925830
Reference: [18] Yu. A.  Klokov and A. I.  Lomakina: One a boundary value problem with singularities on the ends of the segment.Differ. Equations Latv. Mat. Ezhegodnik 17 (1976), 179–186.
Reference: [19] A.  Lomtatidze: Positive solutions of boundary value problems for second order ordinary differential equations with singular points.Differentsial’nye Uravneniya 23 (1987), 1685–1692. MR 0928850
Reference: [20] A.  Lomtatidze: Existence of conjugate points for second order linear differential equations.Georgian Math. J. 2 (1995), 93–98. Zbl 0820.34018, MR 1310503, 10.1007/BF02257736
Reference: [21] C. D.  Luning and W. L.  Perry: Positive solutions of negative exponent generalized Emden–Fowler boundary value problems.SIAM J.  Math. Anal. 12 (1981), 874–879. MR 0635240, 10.1137/0512073
Reference: [22] N. F.  Morozov: On analytic structure of a solution of the membrane equation.Dokl. Akad. Nauk SSSR 152 (1963), 78–80.
Reference: [23] N. F.  Morozov and L. S.  Srubshchik: Application of Chaplygin’s method to investigation of the membrane equation.Differentsial’nye Uravneniya 2 (1966), 425–427. (Russian)
Reference: [24] L. S.  Srubshchik and V. I.  Yudovich: Asymptotics of equation of large deflection of circular symmetrically loaded plate.Sibirsk. Mat. Zh. 4 (1963), 657–672. (Russian)
Reference: [25] S.  Taliaferro: A nonlinear singular boundary value problem.Nonlinear Anal. 3 (1979), 897–904. Zbl 0421.34021, MR 0548961, 10.1016/0362-546X(79)90057-9
Reference: [26] A.  Tineo: Existence theorems for a singular two-point Dirichlet problem.Nonlinear Anal. 19 (1992), 323–333. Zbl 0900.34019, MR 1178406, 10.1016/0362-546X(92)90177-G
Reference: [27] J.  Wang: Solvability of singular nonlinear two-point boundary value problems.Nonlinear Anal. 24 (1995), 555–561. Zbl 0876.34017, MR 1315694, 10.1016/0362-546X(95)93091-H
.

Files

Files Size Format View
CzechMathJ_53-2003-1_3.pdf 403.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo