Previous |  Up |  Next

Article

Title: Graph automorphisms and cells of lattices (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 103-111
Summary lang: English
.
Category: math
.
Summary: In this paper we apply the notion of cell of a lattice for dealing with graph automorphisms of lattices (in connection with a problem proposed by G. Birkhoff). (English)
Keyword: lattice
Keyword: semimodular lattice
Keyword: graph automorphism
Keyword: direct factor
MSC: 06B05
MSC: 06C10
idZBL: Zbl 1014.06007
idMR: MR1962002
.
Date available: 2009-09-24T10:59:36Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127784
.
Reference: [1] G.  Birkhoff: Lattice Theory.Third Edition, , Providence, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] D.  Duffus and I.  Rival: Path length in the covering graph of a lattice.Discrete Math. 19 (1979), 139–158. MR 0543829, 10.1016/0012-365X(77)90029-2
Reference: [3] J. Jakubík: On graph isomorphism of lattices.Czechoslovak Math.  J. 4 (1954), 131–142. (Russian) MR 0069139
Reference: [4] J. Jakubík: On isomorphisms of graphs of lattices.Czechoslovak Math.  J. 35 (1985), 188–200. MR 0787124
Reference: [5] J.  Jakubík: Graph automorphisms of a finite modular lattice.Czechoslovak Math.  J. 49 (1999), 443–447. MR 1692500, 10.1023/A:1022425007638
Reference: [6] J.  Jakubík: Graph automorphisms of semimodular lattices.Math. Bohem. 125 (2000), 459–464. MR 1802294
Reference: [7] J.  Jakubík and M.  Csontóová: Convex isomorphisms of directed multilattices.Math. Bohem. 118 (1993), 359–379. MR 1251882
Reference: [8] M.  Kolibiar: Graph isomorphisms of semilattices.In: Contributions to General Algebra  3, Proc. of the Vienna Conference 1984, Verlag Hölder-Pichler-Tempsky, Wien, 1985, pp. 225–235. Zbl 0563.06004, MR 0815129
Reference: [9] J. G.  Lee: Covering graphs of lattices.Bull. Korean Math. Soc. 23 (1986), 39–46. Zbl 0606.06005, MR 0843207
Reference: [10] C.  Ratanaprasert: Compatible Orderings of Semilattices and Lattices.Ph.D. Thesis, La Trobe University, 1987.
Reference: [11] C.  Ratanaprasert: Compatible orders on semilattices.Tatra Mt. Math. Publ. 5 (1995), 177–187. MR 1384807
Reference: [12] C.  Ratanaprasert and B. A.  Davey: Semimodular lattices with isomorphic graphs.Order 4 (1987), 1–13. MR 0908432
Reference: [13] K.  Reuter: The Kurosh-Ore exchange property.Acta Math. Acad. Sci. Hung. 53 (1989), 119–127. Zbl 0675.06003, MR 0987044, 10.1007/BF02170062
Reference: [14] M.  Stern: On the covering graph of balanced lattices.Discrete Math. 156 (1996), 311–316. Zbl 0861.06005, MR 1405034, 10.1016/0012-365X(95)00061-Z
Reference: [15] M.  Tomková: Graph isomorphisms of partially ordered sets.Math. Slovaca 37 (1987), 47–52. MR 0899016
Reference: [16] R.  Wille: Subdirect decompositions of concept lattices.Algebra Universalis 17 (1983), 275–287. MR 0729937, 10.1007/BF01194537
.

Files

Files Size Format View
CzechMathJ_53-2003-1_9.pdf 292.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo