Previous |  Up |  Next

Article

Title: Some properties of residuated lattices (English)
Author: Bělohlávek, Radim
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 1
Year: 2003
Pages: 161-171
Summary lang: English
.
Category: math
.
Summary: We investigate some (universal algebraic) properties of residuated lattices—algebras which play the role of structures of truth values of various systems of fuzzy logic. (English)
Keyword: residuated lattice
Keyword: fuzzy logic
Keyword: variety
Keyword: congruence
MSC: 03B52
MSC: 06F05
MSC: 08A30
MSC: 08A40
MSC: 08B05
idZBL: Zbl 1014.03510
idMR: MR1962006
.
Date available: 2009-09-24T11:00:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127788
.
Reference: [1] R. Bělohlávek: On the regularity of MV-algebras and Wajsberg hoops.Algebra Universalis 44 (2000), 375–377. MR 1816031, 10.1007/s000120050194
Reference: [2] G. Birkhoff: Lattice Theory, 3rd ed. AMS Colloq. Publ., vol. XXV.Providence, Rhode Island, 1967. MR 0227053
Reference: [3] I. Chajda: Locally regular varieties.Acta Sci. Math. (Szeged) 64 (1998), 431–435. Zbl 0913.08006, MR 1666006
Reference: [4] C. C. Chang: Algebraic analysis of many-valued logics.Trans. Amer. Math. Soc. 88 (1958), 467–490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9
Reference: [5] C. C. Chang: A new proof of completeness of the Łukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74–90. MR 0122718
Reference: [6] R. Cignoli, I. M. L. D’Ottaviano and D. Mundici: Algebraic Foundations of Many-valued Reasoning.Kluwer, Dordrecht, 1999. MR 1786097
Reference: [7] R. Cignoli, F. Esteva, L. Godo and A. Torrens: Basic fuzzy logic is the logic of continuous $t$-norms and their residua.Soft Computing 4 (2000), 106–112. 10.1007/s005000000044
Reference: [8] B. Csákány: Characterizations of regular varieties.Acta Sci. Math. (Szeged) 31 (1970), 187–189. MR 0272697
Reference: [9] R. P. Dilworth and M. Ward: Residuated lattices.Trans.  Amer. Math. Soc. 45 (1939), 335–354. MR 1501995, 10.1090/S0002-9947-1939-1501995-3
Reference: [10] K. Fichtner: Eine Bemerkung über Mannigfaltigkeiten universeller Algebren mit Idealen.Monatsb. Deutsch. Akad. Wiss. Berlin 12 (1970), 21–25. Zbl 0198.33601, MR 0256968
Reference: [11] J. Font, A. Rodriguez and A. Torrens: Wajsberg algebras.Stochastica 8 (1984), 5–31. MR 0780136
Reference: [12] J. A. Goguen: The logic of inexact concepts.Synthese 19 (1968–69), 325–373. 10.1007/BF00485654
Reference: [13] G. Grätzer: Two Mal’cev-type theorems in universal algebra.J. Comb. Theory 8 (1970), 334–342.
Reference: [14] P. Hájek: Metamathematics of Fuzzy Logic.Kluwer, Dordrecht, 1998. MR 1900263
Reference: [15] U. Höhle: Commutative residuated monoids.In: Non-classical logics and their applications to fuzzy subsets, U. Höhle, E. P. Klement (eds.), Kluwer, Dordrecht, 1995.
Reference: [16] U. Höhle: On the fundamentals of fuzzy set theory.J.  Math. Anal. Appl. 201 (1996), 786–826. MR 1400564, 10.1006/jmaa.1996.0285
Reference: [17] B. Jónsson: On the representation of lattices.Math. Scand. 2 (1953), 295–314.
Reference: [18] A. I. Mal’cev: On the general theory of algebraic systems.Matem. Sbornik 35 (1954), 3–20. (Russian)
Reference: [19] V. Novák, I. Perfilieva and J. Močkoř: Mathematical Principles of Fuzzy Logic.Kluwer, Dordrecht, 1999. MR 1733839
Reference: [20] J. Pavelka: On fuzzy logic  I, II, III.Zeit. Math. Log. Grungl. Math. 25 (1979), 45–52, 119–134, 447–464. MR 0524558
Reference: [21] A. Ursini: On subtractive varieties  I.Algebra Universalis 31 (1994), 204–222. Zbl 0799.08010, MR 1259350, 10.1007/BF01236518
Reference: [22] R. Wille: Kongruenzklassengeometrien. Lecture Notes in Math.Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0262149
.

Files

Files Size Format View
CzechMathJ_53-2003-1_13.pdf 336.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo