Previous |  Up |  Next


Morita equivalent; twisted group $C^*$-algebra; crossed product
The non-commutative torus $C^*(\mathbb{Z}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega }}$ with fibres isomorphic to $C^*(\mathbb{Z}^n/S_{\omega }, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb{Z}^n/S_{\omega }$. D. Poguntke [9] proved that $A_{\omega }$ is stably isomorphic to $C(\widehat{S_{\omega }}) \otimes C^*(\mathbb{Z}^n/S_{\omega }, \omega _1) \cong C(\widehat{S_{\omega }}) \otimes A_{\varphi } \otimes M_{kl}(\mathbb{C})$ for a simple non-commutative torus $A_{\varphi }$ and an integer $kl$. It is well-known that a stable isomorphism of two separable $C^*$-algebras is equivalent to the existence of equivalence bimodule between them. We construct an $A_{\omega }$-$C(\widehat{S_{\omega }}) \otimes A_{\varphi }$-equivalence bimodule.
[1] L.  Baggett and A.  Kleppner: Multiplier representations of abelian groups. J.  Funct. Anal. 14 (1973), 299–324. DOI 10.1016/0022-1236(73)90075-X | MR 0364537
[2] M.  Brabanter: The classification of rational rotation $C^*$-algebras. Arch. Math. 43 (1984), 79–83. DOI 10.1007/BF01193614 | MR 0758343
[3] L.  Brown, P.  Green and M.  Rieffel: Stable isomorphism and strong Morita equivalence of $C^*$-algebras. Pacific J.  Math. 71 (1977), 349–363. DOI 10.2140/pjm.1977.71.349 | MR 0463928
[4] S.  Disney and I.  Raeburn: Homogeneous $C^*$-algebras whose spectra are tori. J.  Austral. Math. Soc. (Series A) 38 (1985), 9–39. DOI 10.1017/S1446788700022576 | MR 0765447
[5] R. S.  Doran and J. M. G.  Fell: Representations of $*$-Algebras, Locally Compact Groups, and Banach $*$-Algebraic Bundles. Academic Press, San Diego, 1988.
[6] G. A.  Elliott: On the $K$-theory of the $C^*$-algebra generated by a projective representation of a torsion-free discrete abelian group. In: Operator Algebras and Group Representations, Vol.  1, Pitman, London, 1984, pp. 157–184. MR 0731772 | Zbl 0542.46030
[7] P.  Green: The local structure of twisted covariance algebras. Acta Math. 140 (1978), 191–250. DOI 10.1007/BF02392308 | MR 0493349 | Zbl 0407.46053
[8] D. Poguntke: Simple quotients of group $C^*$-algebras for two step nilpotent groups and connected Lie groups. Ann. Scient. Ec. Norm. Sup. 16 (1983), 151–172. MR 0719767 | Zbl 0523.22007
[9] D.  Poguntke: The structure of twisted convolution $C^*$-algebras on abelian groups. J.  Operator Theory 38 (1997), 3–18. MR 1462012 | Zbl 0924.46046
[10] M. Rieffel: Morita equivalence for operator algebras. Operator Algebras and Applications. Proc. Symp. Pure Math. Vol. 38, R. V.  Kadison (ed.), Amer. Math. Soc., Providence, R. I., 1982, pp. 285–298. MR 0679708 | Zbl 0541.46044
Partner of
EuDML logo