Title:
|
Invariant metrics on $G$-spaces (English) |
Author:
|
Hajduk, Bogusław |
Author:
|
Walczak, Rafał |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2003 |
Pages:
|
449-466 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a $G$-space such that the orbit space $X/G$ is metrizable. Suppose a family of slices is given at each point of $X$. We study a construction which associates, under some conditions on the family of slices, with any metric on $X/G$ an invariant metric on $X$. We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space. (English) |
Keyword:
|
G-space |
Keyword:
|
invariant metric |
Keyword:
|
slice |
MSC:
|
54E35 |
MSC:
|
54H15 |
MSC:
|
57S30 |
idZBL:
|
Zbl 1075.54506 |
idMR:
|
MR1983465 |
. |
Date available:
|
2009-09-24T11:03:17Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127813 |
. |
Reference:
|
[1] D. W. Alekseevski: On perfect actions of groups.Uspiekhi Math. Nauk 34 (1979), 219–220. (Russian) MR 0525656 |
Reference:
|
[2] G. Birkhoff: A note on topological groups.Compositio Math. 3 (1936), 427–430. Zbl 0015.00702, MR 1556955 |
Reference:
|
[3] R. Engelking: General Topology.PWN, Warszawa, 1977. Zbl 0373.54002, MR 0500780 |
Reference:
|
[4] S. Kakutani: Über die Metrization der topologischen Gruppen.Proc. Imp. Acad. Japan 12 (1936), 82–84. MR 1568424, 10.3792/pia/1195580206 |
Reference:
|
[5] J. L. Koszul: Lectures on Groups of Transformation.Tate Institute, Bombay, 1965. MR 0218485 |
Reference:
|
[6] D. Montgomery and L. Zippin: Topological Transformation Groups.Interscience, London, New York, 1995. MR 0073104 |
Reference:
|
[7] M. H. Newman: A theorem on periodic transformations of spaces.Quart. J. Math. 2 (1931), 1–8. Zbl 0001.22703, 10.1093/qmath/os-2.1.1-a |
Reference:
|
[8] R. S. Palais: On the existence of slices for actions of non-compact Lie groups.Ann. Math. 73 (1961), 295–323. Zbl 0103.01802, MR 0126506, 10.2307/1970335 |
Reference:
|
[9] P. A. Smith: Transformations of finite period III.Ann. Math. 42 (1941), 446–458. MR 0004128, 10.2307/1968910 |
. |