Previous |  Up |  Next

Article

Title: Invariant metrics on $G$-spaces (English)
Author: Hajduk, Bogusław
Author: Walczak, Rafał
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 2
Year: 2003
Pages: 449-466
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a $G$-space such that the orbit space $X/G$ is metrizable. Suppose a family of slices is given at each point of $X$. We study a construction which associates, under some conditions on the family of slices, with any metric on $X/G$ an invariant metric on $X$. We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space. (English)
Keyword: G-space
Keyword: invariant metric
Keyword: slice
MSC: 54E35
MSC: 54H15
MSC: 57S30
idZBL: Zbl 1075.54506
idMR: MR1983465
.
Date available: 2009-09-24T11:03:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127813
.
Reference: [1] D. W.  Alekseevski: On perfect actions of groups.Uspiekhi Math. Nauk 34 (1979), 219–220. (Russian) MR 0525656
Reference: [2] G.  Birkhoff: A note on topological groups.Compositio Math. 3 (1936), 427–430. Zbl 0015.00702, MR 1556955
Reference: [3] R. Engelking: General Topology.PWN, Warszawa, 1977. Zbl 0373.54002, MR 0500780
Reference: [4] S.  Kakutani: Über die Metrization der topologischen Gruppen.Proc. Imp. Acad. Japan 12 (1936), 82–84. MR 1568424, 10.3792/pia/1195580206
Reference: [5] J. L. Koszul: Lectures on Groups of Transformation.Tate Institute, Bombay, 1965. MR 0218485
Reference: [6] D. Montgomery and L. Zippin: Topological Transformation Groups.Interscience, London, New York, 1995. MR 0073104
Reference: [7] M. H.  Newman: A theorem on periodic transformations of spaces.Quart. J. Math. 2 (1931), 1–8. Zbl 0001.22703, 10.1093/qmath/os-2.1.1-a
Reference: [8] R. S. Palais: On the existence of slices for actions of non-compact Lie groups.Ann. Math. 73 (1961), 295–323. Zbl 0103.01802, MR 0126506, 10.2307/1970335
Reference: [9] P. A. Smith: Transformations of finite period III.Ann. Math. 42 (1941), 446–458. MR 0004128, 10.2307/1968910
.

Files

Files Size Format View
CzechMathJ_53-2003-2_19.pdf 389.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo