Previous |  Up |  Next

Article

Title: Existence of solutions for the Dirichlet problem with superlinear nonlinearities (English)
Author: Nowakowski, Andrzej
Author: Rogowski, Andrzej
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 515-528
Summary lang: English
.
Category: math
.
Summary: In this paper we establish the existence of nontrivial solutions to \[\frac{\mathrm d}{{\mathrm d}t}L_{x^{\prime }}(t,x^{\prime }(t))+V_{x} (t,x(t))=0,\quad x(0)=0=x(T),\] with $V_x$ superlinear in $x$. (English)
Keyword: nonlinear Dirichlet problem
Keyword: nontrivial solution
Keyword: duality method
Keyword: superlinear nonlinearity
MSC: 34B15
MSC: 47J30
MSC: 49J40
idZBL: Zbl 1080.34516
idMR: MR2000049
.
Date available: 2009-09-24T11:03:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127819
.
Related article: http://dml.cz/handle/10338.dmlcz/128001
.
Reference: [1] A.  Capietto, J.  Mawhin and F.  Zanolin: Boundary value problems for forced superlinear second order ordinary differential equations.Nonlinear Partial Differential Equations and Their Applications. College de France Seminar, Vol. XII, Pitman Res. Notes ser., 302, 1994, pp. 55–64. MR 1291842
Reference: [2] A.  Castro, J.  Cossio and J. M.  Neuberger: A sign-changing solution for a superlinear Dirichlet problem.Rocky Mountain  J. Math. 27 (1997), 1041–1053. MR 1627654, 10.1216/rmjm/1181071858
Reference: [3] S. K. Ingram: Continuous dependence on parameters and boundary value problems.Pacific J.  Math. 41 (1972), 395–408. MR 0304741, 10.2140/pjm.1972.41.395
Reference: [4] G.  Klaasen: Dependence of solutions on boundary conditions for second order ordinary differential equations.J.  Differential Equations 7 (1970), 24–33. Zbl 0184.11704, MR 0273086, 10.1016/0022-0396(70)90121-X
Reference: [5] L.  Lassoued: Periodic solutions of a second order superquadratic systems with a change of sign in the potential.J.  Differential Equations 93 (1991), 1–18. MR 1122304, 10.1016/0022-0396(91)90020-A
Reference: [6] J.  Mawhin: Problèmes de Dirichlet Variationnels Non Linéares.Les Presses de l’Université de Montréal, 1987. MR 0906453
Reference: [7] A.  Nowakowski: A new variational principle and duality for periodic solutions of Hamilton’s equations.J.  Differential Equations 97 (1992), 174–188. Zbl 0759.34039, MR 1161317, 10.1016/0022-0396(92)90089-6
Reference: [8] P. H.  Rabinowitz: Minimax Methods in Critical Points Theory with Applications to Differential Equations.AMS, Providence, 1986. MR 0845785
Reference: [9] D.  O’Regan: Singular Dirichlet boundary value problems. I.  Superlinear and nonresonant case.Nonlinear Anal. 29 (1997), 221–245. MR 1446226, 10.1016/S0362-546X(96)00026-0
.

Files

Files Size Format View
CzechMathJ_53-2003-3_2.pdf 347.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo