Previous |  Up |  Next

Article

Title: Higher degrees of distributivity in $MV$-algebras (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 53
Issue: 3
Year: 2003
Pages: 641-653
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with the of an $MV$-algebra $\mathcal A$, where $\alpha $ and $\beta $ are nonzero cardinals. It is proved that if $\mathcal A$ is singular and $(\alpha,2)$-distributive, then it is . We show that if $\mathcal A$ is complete then it can be represented as a direct product of $MV$-algebras which are homogeneous with respect to higher degrees of distributivity. (English)
Keyword: $MV$-algebra
Keyword: archimedean $MV$-algebra
Keyword: completeness
Keyword: singular $MV$-algebra
Keyword: higher degrees of distributivity
MSC: 06D10
MSC: 06D35
MSC: 06F20
idZBL: Zbl 1080.06014
idMR: MR2000060
.
Date available: 2009-09-24T11:05:24Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127830
.
Reference: [1] D.  Byrd and J. T.  Lloyd: Closed subgroups and complete distributivity in lattice-ordered groups.Math. Z. 101 (1967), 123–130. MR 0218284, 10.1007/BF01136029
Reference: [2] R.  Cignoli, I. M. L.  D’Ottaviano and D.  Mundici: Algebraic Foundations of Many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol.  7.Kluwer Academic Publishers, Dordrecht, 2000. MR 1786097
Reference: [3] P.  Conrad: The relationship between the radical of a lattice ordered group and complete distributivity.Pacific J.  Math. 14 (1964), 494–499. Zbl 0122.03701, MR 0166279, 10.2140/pjm.1964.14.493
Reference: [4] P.  Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011
Reference: [5] L.  Fuchs: Partially Ordered Algebraic Systems.Pergamon Press, Oxford, 1963. Zbl 0137.02001, MR 0171864
Reference: [6] J.  Jakubík: Higher degrees of distributivity in lattices and lattice ordered groups.Czechoslovak Math.  J. 18 (1968), 356–376. MR 0225690
Reference: [7] J.  Jakubík: Distributivity in lattice ordered groups.Czechoslovak Math.  J. 22 (1972), 108–125. MR 0325487
Reference: [8] J.  Jakubík: Direct product decompositions of $MV$-algebras.Czechoslovak Math.  J. 44 (1994), 725–739.
Reference: [9] J.  Jakubík: On complete $MV$-algebras.Czechoslovak Math.  J. 45 (1995), 473–480. MR 1344513
Reference: [10] J.  Jakubík: On archimedean $MV$-algebras.Czechoslovak Math.  J. 48 (1998), 575–582. MR 1637871, 10.1023/A:1022436113418
Reference: [11] J.  Jakubík: Complete generators and maximal completions of $MV$-algebras.Czechoslovak Math.  J. 48 (1998), 597–608. MR 1637863, 10.1023/A:1022440214327
Reference: [12] J. T.  Lloyd: Complete distributivity in certain infinite permutation groups.Michigan Math.  J. 14 (1967), 393–400. Zbl 0167.30202, MR 0219462, 10.1307/mmj/1028999839
Reference: [13] R. S.  Pierce: Distributivity in Boolean algebras.Pacific J.  Math. 7 (1957), 983–992. Zbl 0086.02803, MR 0089180, 10.2140/pjm.1957.7.983
Reference: [14] R.  Sikorski: Boolean Algebras, Second Edition.Springer Verlag, Berlin, 1964. MR 0126393
Reference: [15] F.  Šik: Über subdirekte Summen geordneter Gruppen.Czechoslovak Math.  J. 10 (1960), 400–424. MR 0123626
Reference: [16] E. C.  Weinberg: Higher degrees of distributivity in lattices of continuous functions.Trans. Amer. Math. Soc. 104 (1962), 334–346. Zbl 0105.09401, MR 0138569, 10.1090/S0002-9947-1962-0138569-8
Reference: [17] E. C.  Weinberg: Completely distributive lattice ordered groups.Pacific J.  Math. 12 (1962), 1131–1148. Zbl 0111.24301, MR 0147549, 10.2140/pjm.1962.12.1131
.

Files

Files Size Format View
CzechMathJ_53-2003-3_13.pdf 330.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo