Article
Keywords:
boundary behavior of power series; exceptional set
Summary:
For $ z\in \partial B^n$, the boundary of the unit ball in $\mathbb{C}^n$, let $\Lambda (z)=\lbrace \lambda \:|\lambda |\le 1\rbrace $. If $ f\in \mathbb{O}(B^n)$ then we call $E(f)=\lbrace z\in \partial B^n\:\int _{\Lambda (z)}|f(z)|^2\mathrm{d}\Lambda (z)=\infty \rbrace $ the exceptional set for  $f$. In this note we give a tool for describing such sets. Moreover we prove that if $E$  is a $G_\delta $ and $F_\sigma $ subset of the projective $(n-1)$-dimensional space $\mathbb{P}^{n-1}=\mathbb{P}(\mathbb{C}^n)$ then there exists a holomorphic function  $f$ in the unit ball  $B^n$ so that $E(f)=E$.
References:
                        
[1] J.  Globevink: 
Holomorphic functions which are highly nonintegrable at the boundary. Israel J. Math (to appear). 
MR 1749678[2] J. Globevnik and E. L. Stout: 
Highly noncontinuable functions on convex domains. Bull. Sci. Math. 104 (1980), 417–439. 
MR 0602409[3] J. Globevnik and E. L. Stout: 
Holomorphic functions with highly noncontinuable boundary behavior. J. Anal. Math. 41 (1982), 211–216. 
MR 0687952[4] J.  Siciak: 
Highly noncontinuable functions on polynomially convex sets. Zeszyty Naukowe Uniwersytetu Jagiellonskiego 25 (1985), 95–107. 
MR 0837828 | 
Zbl 0585.32012[5] W.  Rudin: 
Function Theory in the Unit Ball of  $ \mathbb{C}^{n} $. Springer, New York, 1980. 
MR 0601594