Previous |  Up |  Next

Article

Title: The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem (English)
Author: Cichoń, M.
Author: Kubiaczyk, I.
Author: Sikorska, A.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 279-289
Summary lang: English
.
Category: math
.
Summary: In this paper we prove an existence theorem for the Cauchy problem \[ x^{\prime }(t) = f(t, x(t)), \quad x(0) = x_0, \quad t \in I_{\alpha } = [0, \alpha ] \] using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function $f$ are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function $f$ satisfies some conditions expressed in terms of measures of weak noncompactness. (English)
Keyword: pseudo-solution
Keyword: Pettis integral
Keyword: Henstock-Kurzweil integral
Keyword: Cauchy problem
MSC: 28B05
MSC: 34G20
idZBL: Zbl 1080.34550
idMR: MR2059250
.
Date available: 2009-09-24T11:12:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127887
.
Reference: [1] Z. Artstein: Topological dynamics of ordinary differential equations and Kurzweil equations.J.  Differential Equations 23 (1977), 224–243. Zbl 0353.34044, MR 0432985, 10.1016/0022-0396(77)90128-0
Reference: [2] J. M. Ball: Weak continuity properties of mappings and semi-groups.Proc. Royal Soc. Edinbourgh Sect.  A 72 (1979), 275–280. MR 0397495
Reference: [3] J. Banaś: Demicontinuity and weak sequential continuity of operators in the Lebesgue space.In: Proceedings of the 1st Polish Symposium on Nonlinear Analysis, Łódź, 1997, pp. 124–129.
Reference: [4] J. Banaś and K. Goebel: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Appl. Math. Vol  60.Marcel Dekker, New York-Basel, 1980. MR 0591679
Reference: [5] F. S. DeBlasi: On a property of the unit sphere in a Banach space.Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259–262. MR 0482402
Reference: [6] S. S. Cao: The Henstock integral for Banach valued functions.SEA Bull. Math. 16 (1992), 35–40. Zbl 0749.28007, MR 1173605
Reference: [7] V. G. Celidze and A. G. Dzvarsheishvili: Theory of Denjoy Integral and Some of Its Applications., Tbilisi, 1987. (Russian)
Reference: [8] T. S. Chew: On Kurzweil generalized ordinary differential equations.J.  Differential Equations 76 (1988), 286–293. Zbl 0666.34041, MR 0969426, 10.1016/0022-0396(88)90076-9
Reference: [9] T. S. Chew and F. Flordelija: On $x^{\prime }= f(t, x)$ and Henstock-Kurzweil integrals.Differential Integral Equations 4 (1991), 861–868. MR 1108065
Reference: [10] M. Cichoń: Weak solutions of differential equations in Banach spaces.Discuss. Math. Diff. Inclusions 15 (1995), 5–14.
Reference: [11] M. Cichoń and I. Kubiaczyk: On the set of solutions of the Cauchy problem in Banach spaces.Arch. Math. 63 (1994), 251–257. MR 1287254, 10.1007/BF01189827
Reference: [12] M. Cichoń: Convergence theorems for the Henstock-Kurzweil-Pettis integral.Acta Math. Hungar. 92 (2001), 75–82. MR 1924251, 10.1023/A:1013756111769
Reference: [13] Wu Congxin, Li Baolin and F. S. Lee: Discontinuous systems and the Henstock-Kurzweil integral.J.  Math. Anal. Appl. 229 (1999), 119–136. MR 1664308, 10.1006/jmaa.1998.6149
Reference: [14] J. Diestel and J. J. Uhl: Vector Measures. Math. Surveys, Vol.  15.Providence, Rhode Island, 1977. MR 0453964
Reference: [15] R. F. Geitz: Pettis integration.Proc. Amer. Math. Soc. 82 (1981), 81–86. Zbl 0506.28007, MR 0603606, 10.1090/S0002-9939-1981-0603606-8
Reference: [16] R. A. Gordon: The McShane integral of Banach-valued functions.Illinois J.  Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [17] R. A. Gordon: The Integrals of Lebesgue.Denjoy, Perron and Henstock, Providence, Rhode Island, 1994. Zbl 0807.26004, MR 1288751
Reference: [18] R. A. Gordon: Riemann integration in Banach spaces.Rocky Mountain J.  Math. 21 (1991), 923–949. Zbl 0764.28008, MR 1138145, 10.1216/rmjm/1181072923
Reference: [19] R. A. Gordon: The Denjoy extension of the Bochner, Pettis, and Dunford integrals.Studia Math. 92 (1989), 73–91. Zbl 0681.28006, MR 0984851, 10.4064/sm-92-1-73-91
Reference: [20] R. Henstock: The General Theory of Integration. Oxford Mathematical Monographs.Clarendon Press, Oxford, 1991. MR 1134656
Reference: [21] W. J. Knight: Solutions of differential equations in Banach spaces.Duke Math.  J. 41 (1974), 437–442. MR 0344624, 10.1215/S0012-7094-74-04149-0
Reference: [22] I. Kubiaczyk: On fixed point theorem for weakly sequentially continuous mappings, Discuss.Math. Diff. Inclusions 15 (1995), 15–20. MR 1344524
Reference: [23] I. Kubiaczyk: On the existence of solutions of differential equations in Banach spaces.Bull. Acad. Pol. Math. 33 (1985), 607–614. Zbl 0607.34055, MR 0849409
Reference: [24] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math.  J. 7 (1957), 418–449. Zbl 0090.30002, MR 0111875
Reference: [25] J. Kurzweil: Nichtabsolut Konvergente Integrale. Teubner Texte zür Mathematik, Vol.  26., Leipzig, 1980. MR 0597703
Reference: [26] A. R. Mitchell and Ch. Smith: An existence theorem for weak solutions of differential equations in Banach spaces.In: Nonlinear Equations in Abstract Spaces, V. Laksmikantham (ed.), 1978, pp. 387–404. MR 0502554
Reference: [27] Lee Peng-Yee: Lanzhou Lectures on Henstock Integration.World Scientific, Singapore, 1989. Zbl 0699.26004, MR 1050957
Reference: [28] D. O’Regan: Weak solutions of ordinary differential equations in Banach Spaces.Applied Mathematics Letters 12 (1999), 101–105. MR 1663477, 10.1016/S0893-9659(98)00133-5
Reference: [29] B. J. Pettis: On integration in vector spaces.Trans. Amer. Math. Soc. 44 (1938), 277–304. Zbl 0019.41603, MR 1501970, 10.1090/S0002-9947-1938-1501970-8
.

Files

Files Size Format View
CzechMathJ_54-2004-2_2.pdf 348.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo