Previous |  Up |  Next

Article

Keywords:
lattice ordered group; interpolation rule; radical class
Summary:
Let $\alpha $ be an infinite cardinal. In this paper we define an interpolation rule $\mathop {\mathrm IR}(\alpha )$ for lattice ordered groups. We denote by $C (\alpha )$ the class of all lattice ordered groups satisfying $\mathop {\mathrm IR}(\alpha )$, and prove that $C (\alpha )$ is a radical class.
References:
[1] P. F. Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[2] P. F. Conrad: $K$-radical classes of lattice ordered groups. In: Proc. Conf. Carbondale (1980), Lecture Notes Math. Vol. 848, 1981, pp. 186–207. MR 0613186 | Zbl 0455.06010
[3] M. R. Darnel: $\sigma $-interpolation lattice-ordered groups. Czechoslovak Math.  J. 50 (2000), 1–2. MR 1745452 | Zbl 1035.06004
[4] M. R. Darnel and J. Martinez: Radical classes of lattice ordered groups vs. classes of compact spaces. Order 19 (2002), 35–72. DOI 10.1023/A:1015259615457 | MR 1902661
[5] K. R. Goodearl: Partially Ordered Abelian Groups with Interpolation. Math. Surveys and Monographs, No.  20. Amer. Math. Soc., Providence, 1986. MR 0845783
[6] Ch. W. Holland: Varieties of $\ell $-groups are torsion classes. Czechoslovak Math.  J. 29 (1979), 11–12. MR 0518135
[7] J. Jakubík: Radical mappings and radical classes of lattice ordered groups. Symposia Math. 21 (1977), 451–477. MR 0491397
[8] J. Jakubík: On some completeness properties for lattice ordered groups. Czechoslovak Math.  J. 45 (1995), 253–266. MR 1331463
[9] N. Ja. Medvedev: On the lattice of radicals of a finitely generated $\ell $-group. Math. Slovaca 33 (1983), 185–188. (Russian) MR 0699088
[10] R. C. Walker: The Stone-Čech Compactification. Ergebn. Math.  80. Springer-Verlag, Berlin-Heidelberg-New York, 1974. MR 0380698
Partner of
EuDML logo