Title:
|
On multiplication groups of relatively free quasigroups isotopic to Abelian groups (English) |
Author:
|
Drápal, Aleš |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2005 |
Pages:
|
61-86 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop {\mathrm Mlt}Q$ is a Frobenius group. Conversely, if $\mathop {\mathrm Mlt}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup). (English) |
Keyword:
|
central quasigroups |
Keyword:
|
$T$-quasigroups |
Keyword:
|
multiplication groups |
Keyword:
|
Frobenius groups |
Keyword:
|
quasigroups isotopic to Abelian groups |
MSC:
|
08B20 |
MSC:
|
20N05 |
idZBL:
|
Zbl 1081.20078 |
idMR:
|
MR2121656 |
. |
Date available:
|
2009-09-24T11:20:53Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127959 |
. |
Reference:
|
[1] A. Albert: Quasigroups I.Trans. Amer. Math. Soc. 54 (1943), 507–519. Zbl 0063.00039, MR 0009962, 10.1090/S0002-9947-1943-0009962-7 |
Reference:
|
[2] V. D. Belousov: Balanced identities in quasigroups.Matem. sbornik (N.S.) 70 (1966), 55–97. (Russian) Zbl 0199.05203, MR 0202898 |
Reference:
|
[3] V. D. Belousov: Osnovy teorii kvazigrupp i lup.Nauka, Moskva, 1967. MR 0218483 |
Reference:
|
[4] G. B. Belyavskaya: $T$-quasigroups and the centre of a quasigroup.Matem. Issled. 111 (1989), 24–43. (Russian) MR 1045383 |
Reference:
|
[5] G. B. Belyavskaya: Abelian quasigroups and $T$-quasigroups.Quasigroups and related systems 1 (1994), 1–7. MR 1327941 |
Reference:
|
[6] R. H. Bruck: A Survey of Binary Systems.Springer-Verlag, 1971. MR 0093552 |
Reference:
|
[7] O. Chein, H. O. Pflugfelder and J. D. H. Smith: Quasigroups and Loops: Theory and Applications.Heldermann, Berlin, 1990. MR 1125806 |
Reference:
|
[8] A. Drápal: Multiplication groups of free loops I.Czechoslovak Math. J. 46 (1996), 121–131. MR 1371694 |
Reference:
|
[9] A. Drápal: Multiplication groups of free loops II.Czechoslovak Math. J. 46 (1996), 201–220. MR 1388610 |
Reference:
|
[10] A. Drápal: Multiplication groups of finite free loops that fix at most two points.J. Algebra 235 (2001), 154–175. MR 1807660, 10.1006/jabr.2000.8472 |
Reference:
|
[11] A. Drápal: Orbits of inner mapping groups.Monatsh. Math. 134 (2002), 191–206. MR 1883500, 10.1007/s605-002-8256-2 |
Reference:
|
[12] G. Grätzer: Universal Algebra.Van Nostrand, Princeton, 1968. MR 0248066 |
Reference:
|
[13] J. Ježek and T. Kepka: Quasigroups isotopic to a group.Comment. Math. Univ. Carolin. 16 (1975), 59–76. MR 0367103 |
Reference:
|
[14] J. Ježek: Normal subsets of quasigroups.Comment. Math. Univ. Carolin. 16 (1975), 77–85. MR 0367104 |
Reference:
|
[15] J. Ježek: Univerzální algebra a teorie modelů.SNTL, Praha, 1976. MR 0546057 |
Reference:
|
[16] T. Kepka and P. Němec: $T$-quasigroups I.Acta Univ. Carolin. Math. Phys. 12 (1971), 39–49. MR 0320206 |
Reference:
|
[17] T. Kepka and P. Němec: $T$-quasigroups II.Acta Univ. Carolin. Math. Phys. 12 (1971), 31–49. MR 0654381 |
Reference:
|
[18] J. D. H. Smith: Mal’cev Varieties.Springer, Berlin, 1976. Zbl 0344.08002, MR 0432511 |
. |