Previous |  Up |  Next

Article

Title: On multiplication groups of relatively free quasigroups isotopic to Abelian groups (English)
Author: Drápal, Aleš
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 61-86
Summary lang: English
.
Category: math
.
Summary: If $Q$ is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group $\mathop {\mathrm Mlt}Q$ is a Frobenius group. Conversely, if $\mathop {\mathrm Mlt}Q$ is a Frobenius group, $Q$ a quasigroup, then $Q$ has to be isotopic to an Abelian group. If $Q$ is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup). (English)
Keyword: central quasigroups
Keyword: $T$-quasigroups
Keyword: multiplication groups
Keyword: Frobenius groups
Keyword: quasigroups isotopic to Abelian groups
MSC: 08B20
MSC: 20N05
idZBL: Zbl 1081.20078
idMR: MR2121656
.
Date available: 2009-09-24T11:20:53Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127959
.
Reference: [1] A.  Albert: Quasigroups  I.Trans. Amer. Math. Soc. 54 (1943), 507–519. Zbl 0063.00039, MR 0009962, 10.1090/S0002-9947-1943-0009962-7
Reference: [2] V. D. Belousov: Balanced identities in quasigroups.Matem. sbornik (N.S.) 70 (1966), 55–97. (Russian) Zbl 0199.05203, MR 0202898
Reference: [3] V. D.  Belousov: Osnovy teorii kvazigrupp i lup.Nauka, Moskva, 1967. MR 0218483
Reference: [4] G. B.  Belyavskaya: $T$-quasigroups and the centre of a quasigroup.Matem. Issled. 111 (1989), 24–43. (Russian) MR 1045383
Reference: [5] G. B.  Belyavskaya: Abelian quasigroups and $T$-quasigroups.Quasigroups and related systems 1 (1994), 1–7. MR 1327941
Reference: [6] R. H.  Bruck: A Survey of Binary Systems.Springer-Verlag, 1971. MR 0093552
Reference: [7] O.  Chein, H. O.  Pflugfelder and J. D. H.  Smith: Quasigroups and Loops: Theory and Applications.Heldermann, Berlin, 1990. MR 1125806
Reference: [8] A.  Drápal: Multiplication groups of free loops  I.Czechoslovak Math.  J. 46 (1996), 121–131. MR 1371694
Reference: [9] A.  Drápal: Multiplication groups of free loops  II.Czechoslovak Math.  J. 46 (1996), 201–220. MR 1388610
Reference: [10] A.  Drápal: Multiplication groups of finite free loops that fix at most two points.J.  Algebra 235 (2001), 154–175. MR 1807660, 10.1006/jabr.2000.8472
Reference: [11] A.  Drápal: Orbits of inner mapping groups.Monatsh. Math. 134 (2002), 191–206. MR 1883500, 10.1007/s605-002-8256-2
Reference: [12] G.  Grätzer: Universal Algebra.Van Nostrand, Princeton, 1968. MR 0248066
Reference: [13] J.  Ježek and T.  Kepka: Quasigroups isotopic to a group.Comment. Math. Univ. Carolin. 16 (1975), 59–76. MR 0367103
Reference: [14] J.  Ježek: Normal subsets of quasigroups.Comment. Math. Univ. Carolin. 16 (1975), 77–85. MR 0367104
Reference: [15] J.  Ježek: Univerzální algebra a teorie modelů.SNTL, Praha, 1976. MR 0546057
Reference: [16] T.  Kepka and P.  Němec: $T$-quasigroups  I.Acta Univ. Carolin. Math. Phys. 12 (1971), 39–49. MR 0320206
Reference: [17] T.  Kepka and P.  Němec: $T$-quasigroups  II.Acta Univ. Carolin. Math. Phys. 12 (1971), 31–49. MR 0654381
Reference: [18] J. D. H.  Smith: Mal’cev Varieties.Springer, Berlin, 1976. Zbl 0344.08002, MR 0432511
.

Files

Files Size Format View
CzechMathJ_55-2005-1_4.pdf 434.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo