Previous |  Up |  Next

Article

Keywords:
differential system of neutral type; oscillatory solution
Summary:
We study oscillatory properties of solutions of systems \[ \begin{aligned} {[y_1(t)-a(t)y_1(g(t))]}^{\prime }=&p_1(t)y_2(t), y_2^{\prime }(t)=&{-p_2}(t)f(y_1(h(t))), \quad t\ge t_0. \end{aligned} \]
References:
[1] I.  Györi and G.  Ladas: Oscillation of systems of neutral differential equations. Diff. and Integral Equat. 1 (1988), 281–286. MR 0929915
[2] Y.  Kitamura and T.  Kusano: On the oscillation of a class of nonlinear differential systems with deviating argument. J.  Math. Anal. Appl. 66 (1978), 20–36. DOI 10.1016/0022-247X(78)90267-6 | MR 0513483
[3] P.  Marušiak: Oscillation criteria for nonlinear differential systems with general deviating arguments of mixed type. Hiroshima Math.  J. 20 (1990), 197–208. MR 1050436
[4] P.  Marušiak: Oscillatory properties of functional differential systems of neutral type. Czechoslovak Math.  J. 43(118) (1993), 649–662. MR 1258427
[5] B.  Mihalíková: Some properties of neutral differential systems equations. Bolletino U.M.I. 8 5-B (2002), 279–287. MR 1911192
[6] H.  Mohamad and R.  Olach: Oscillation of second order linear neutral differential equations. In: Proceedings of the International Scientific Conference of Mathematics, University of Žilina, Žilina, 1998, pp. 195–201.
[7] R.  Olach: Oscillation of differential equation of neutral type. Hiroshima Math.  J. 25 (1995), 1–10. MR 1322598
[8] R.  Olach and H.  Šamajová: Oscillation of nonlinear differential systems with retarded arguments. 1st  International Conference APLIMAT 2002, , Bratislava, 2002, pp. 309–312.
[9] E.  Špániková: Oscillatory properties of solutions of three-dimensional differential systems of neutral type. Czechoslovak Math.  J. 50(125) (2000), 879–887. DOI 10.1023/A:1022429031938 | MR 1792977
[10] E.  Špániková: Oscillatory properties of solutions of neutral differential systems. Fasc. Math. 31 (2001), 91–103.
Partner of
EuDML logo