Previous |  Up |  Next

Article

Title: On signed majority total domination in graphs (English)
Author: Xing, Hua-Ming
Author: Sun, Liang
Author: Chen, Xue-Gang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 341-348
Summary lang: English
.
Category: math
.
Summary: We initiate the study of signed majority total domination in graphs. Let $G=(V,E)$ be a simple graph. For any real valued function $f\: V \rightarrow \mathbb{R}$ and ${S\subseteq V}$, let $f(S)=\sum _{v\in S}f(v)$. A signed majority total dominating function is a function $f\: V\rightarrow \lbrace -1,1\rbrace $ such that $f(N(v))\ge 1$ for at least a half of the vertices $v\in V$. The signed majority total domination number of a graph $G$ is $\gamma _{{\mathrm maj}}^{{\,\mathrm t}}(G)=\min \lbrace f(V)\mid f$ is a signed majority total dominating function on $G\rbrace $. We research some properties of the signed majority total domination number of a graph $G$ and obtain a few lower bounds of $\gamma _{{\mathrm maj}}^{{\,\mathrm t}}(G)$. (English)
Keyword: signed majority total dominating function
Keyword: signed majority total domination number
MSC: 05C35
idZBL: Zbl 1081.05049
idMR: MR2137141
.
Date available: 2009-09-24T11:23:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127981
.
Reference: [1] B.  Zelinka: Signed total domination number of a graph.Czechoslovak Math. J. 51 (2001), 225–229. Zbl 0977.05096, MR 1844306, 10.1023/A:1013782511179
Reference: [2] I.  Broere, J. H.  Hattingh, M. A.  Henning and A. A. McRae: Majority domination in graphs.Discrete Math. 138 (1995), 125–135. MR 1322087, 10.1016/0012-365X(94)00194-N
Reference: [3] J. H.  Hattingh: Majority domination and its generalizations.Domination in Graphs: Advanced Topics, T. W.  Haynes, S. T.  Hedetniemi,and P. J. Slater (eds.), Marcel Dekker, New York, 1998. Zbl 0891.05042, MR 1605689
Reference: [4] T. S.  Holm: On majority domination in graph.Discrete Math. 239 (2001), 1–12. MR 1850982, 10.1016/S0012-365X(00)00370-8
.

Files

Files Size Format View
CzechMathJ_55-2005-2_5.pdf 323.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo