Article
Keywords:
oscillation theory
Summary:
In this paper two sequences of oscillation criteria for the self-adjoint second order differential equation $(r(t)u^{\prime }(t))^{\prime }+p(t)u(t)=0$ are derived. One of them deals with the case $\int ^{\infty }\frac{{\mathrm d}t}{r(t)}=\infty $, and the other with the case $\int ^{\infty }\frac{{\mathrm d}t}{r(t)}<\infty $.
References:
                        
[2] M. Cecchi, M. Marini and G. Villari: 
Integral criteria for a classification of solutions of linear differential equations. J.  Differential Equations 99 (1992), 381–397. 
DOI 10.1016/0022-0396(92)90027-K | 
MR 1184060 
[3] J. Dzurina: 
Property  (A) of advanced functional differential equations. Math. Slovaca 45 (1995), 129–137. 
MR 1357069 | 
Zbl 0840.34075 
[5] J. Ohriska: 
Oscillation of differential equations and $v$-derivatives. Czechoslovak Math.  J. 39(114) (1989), 24–44. 
MR 0983481 | 
Zbl 0673.34044 
[6] J. Ohriska: 
On the oscillation of a linear differential equation of second order. Czechoslovak Math. J. 39(114) (1989), 16–23. 
MR 0983480 | 
Zbl 0673.34043 
[7] W. T. Reid: 
Sturmian Theory for Ordinary Differential Equations. Springer-Verlag, New York, 1980. 
MR 0606199 | 
Zbl 0459.34001