Previous |  Up |  Next

Article

Title: On nonregular ideals and $z^\circ$-ideals in $C(X)$ (English)
Author: Azarpanah, F.
Author: Karavan, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 397-407
Summary lang: English
.
Category: math
.
Summary: The spaces $X$ in which every prime $z^\circ $-ideal of $C(X)$ is either minimal or maximal are characterized. By this characterization, it turns out that for a large class of topological spaces $X$, such as metric spaces, basically disconnected spaces and one-point compactifications of discrete spaces, every prime $z^\circ $-ideal in $C(X)$ is either minimal or maximal. We will also answer the following questions: When is every nonregular prime ideal in $C(X)$ a $z^\circ $-ideal? When is every nonregular (prime) $z$-ideal in $C(X)$ a $z^\circ $-ideal? For instance, we show that every nonregular prime ideal of $C(X)$ is a $z^\circ $-ideal if and only if $X$ is a $\partial $-space (a space in which the boundary of any zeroset is contained in a zeroset with empty interior). (English)
Keyword: $z^\circ $-ideal
Keyword: prime $z$-ideal
Keyword: nonregular ideal
Keyword: almost ${P}$-space
Keyword: $\partial $-space
Keyword: $m$-space
MSC: 54C40
idZBL: Zbl 1081.54013
idMR: MR2137146
.
Date available: 2009-09-24T11:23:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127986
.
Reference: [1] M. F.  Atiyah and I. G.  Macdonald: Introduction to Commutative Algebra.Addison-Wesly, Reading, 1969.
Reference: [2] F. Azarpanah: On almost ${P}$-spaces.Far East J.  Math. Sci, Special volume (2000), 121–132. Zbl 0954.54006, MR 1761076
Reference: [3] F. Azarpanah, O. A. S.  Karamzadeh and A.  Rezai Aliabad: On $z^\circ $-ideals in  $C(X)$.Fund. Math. 160 (1999), 15–25. MR 1694400
Reference: [4] F. Azarpanah, O. A. S.  Karamzadeh and A.  Rezai Aliabad: On ideals consisting entirely of zero divisors.Comm. Algebra 28 (2000), 1061–1073. MR 1736781, 10.1080/00927870008826878
Reference: [5] F.  Dashiel, A.  Hager and M.  Henriksen: Order-Cauchy completions and vector lattices of continuous functions.Canad. J.  Math. XXXII (1980), 657–685. MR 0586984, 10.4153/CJM-1980-052-0
Reference: [6] R.  Engelking: General Topology.PWN-Polish Scientific Publishers, Warszawa, 1977. Zbl 0373.54002, MR 0500780
Reference: [7] L.  Gillman and M.  Jerison: Rings of Continuous Functions.Springer-Verlag, New York-Heidelberg-Berlin, 1976. MR 0407579
Reference: [8] M.  Henriksen and M.  Jerison: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110–130. MR 0194880, 10.1090/S0002-9947-1965-0194880-9
Reference: [9] M.  Henriksen, J.  Martinz and R. G. Woods: Spaces  $X$ in which all prime $z$-ideals of  $C(X)$ are minimal or maximal.International Conference on Applicable General Topology, Ankara, , , 2001. MR 2026163
Reference: [10] R.  Levy: Almost ${P}$-spaces.Canad. J.  Math. 2 (1977), 284–288. Zbl 0342.54032, MR 0464203, 10.4153/CJM-1977-030-7
Reference: [11] M. A.  Mulero: Algebraic properties of rings of continuous functions.Fund. Math. 149 (1996), 55–66. Zbl 0840.54020, MR 1372357
Reference: [12] A. I. Veksler: $P^{\prime }$-points, $P^{\prime }$-sets, ${P}^{\prime }$-spaces. A new class of order-continuous measures and functionals.Sov. Math. Dokl. 14 (1973), 1445–1450. Zbl 0291.54046, MR 0341447
.

Files

Files Size Format View
CzechMathJ_55-2005-2_10.pdf 352.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo