Previous |  Up |  Next

Article

Title: Weighted inequalities for integral operators with some homogeneous kernels (English)
Author: Riveros, María Silvina
Author: Urciuolo, Marta
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 423-432
Summary lang: English
.
Category: math
.
Summary: In this paper we study integral operators of the form \[ Tf(x)=\int | x-a_1y|^{-\alpha _1}\dots | x-a_my|^{-\alpha _m}f(y)\mathrm{d}y, \] $\alpha _1+\dots +\alpha _m=n$. We obtain the $L^p(w)$ boundedness for them, and a weighted $(1,1)$ inequality for weights $w$ in $A_p$ satisfying that there exists $c\ge 1$ such that $w( a_ix) \le cw( x)$ for a.e. $x\in \mathbb R^n$, $1\le i\le m$. Moreover, we prove $\Vert Tf\Vert _{{\mathrm BMO}}\le c\Vert f\Vert _\infty $ for a wide family of functions $f\in L^\infty ( \mathbb R^n)$. (English)
Keyword: weights
Keyword: integral operators
MSC: 42A50
MSC: 42B20
MSC: 42B25
idZBL: Zbl 1081.42018
idMR: MR2137148
.
Date available: 2009-09-24T11:24:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127988
.
Reference: [1] R. Coifmann and C. Fefferman: Weighted norm inequalities for maximal functions and singular integrals.Studia Math. 51 (1974), 241–250. MR 0358205, 10.4064/sm-51-3-241-250
Reference: [2] J. Duoandikoetxea: Análisis de Fourier.Ediciones de la Universidad Autónoma de Madrid, Editorial Siglo  XXI, 1990.
Reference: [3] T. Godoy and M. Urciuolo: About the $L^p$  boundedness of some integral operators.Revista de la UMA 38 (1993), 192–195. MR 1276023
Reference: [4] T.  Godoy and M.  Urciuolo: On certain integral operators of fractional type.Acta Math. Hungar. 82 (1999), 99–105. MR 1658586, 10.1023/A:1026437621978
Reference: [5] F. John and L. Nirenberg: On functions of bounded mean oscillation.Comm. Pure Appl. Math. 14 (1961), 415–426. MR 0131498, 10.1002/cpa.3160140317
Reference: [6] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [7] F.  Ricci and P.  Sjögren: Two parameter maximal functions in the Heisenberg group.Math.  Z. 199 (1988), 565–575. MR 0968322
Reference: [8] A. de la Torre and J. L. Torrea: One-sided discrete square function.Studia Math. 156 (2003), 243–260. MR 1978442, 10.4064/sm156-3-3
.

Files

Files Size Format View
CzechMathJ_55-2005-2_12.pdf 358.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo