Previous |  Up |  Next

Article

Title: Embedding sums of cancellative modes into semimodules (English)
Author: Romanowska, Anna
Author: Zamojska-Dzienio, Anna
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 975-991
Summary lang: English
.
Category: math
.
Summary: A mode (idempotent and entropic algebra) is a Lallement sum of its cancellative submodes over a normal band if it has a congruence with a normal band quotient and cancellative congruence classes. We show that such a sum embeds as a subreduct into a semimodule over a certain ring, and discuss some consequences of this fact. The result generalizes a similar earlier result of the authors proved in the case when the normal band is a semilattice. (English)
Keyword: modes (idempotent and entropic algebras)
Keyword: cancellative modes
Keyword: sums of algebras
Keyword: embeddings
Keyword: semimodules over semirings
Keyword: idempotent subreducts of semimodules
MSC: 03C05
MSC: 08A05
MSC: 08C15
idZBL: Zbl 1081.08003
idMR: MR2184378
.
Date available: 2009-09-24T11:29:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128039
.
Reference: [1] J. S.  Golan: The Theory of Semirings.Longman, Harlow, 1992. Zbl 0780.16036
Reference: [2] J. Ježek and T.  Kepka: Medial Grupoids. Rozpravy ČSAV, Řada Mat. Přír. Věd. 93/2.Academia, Praha, 1983. MR 0734873
Reference: [3] K. Kearnes: Semilattice modes  I: the associated semiring.Algebra Universalis 34 (1995), 220–272. Zbl 0848.08005, MR 1348951, 10.1007/BF01204784
Reference: [4] J. Kuras: Application of Agassiz Systems to Represantation of Sums of Equationally Defined Classes of Algebras.PhD. Thesis, M. Kopernik University, Toruń, 1985. (Polish)
Reference: [5] A. I. Mal’cev: Algebraic Systems.Springer-Verlag, Berlin, 1973. MR 0349384
Reference: [6] A. B. Romanowska: An introduction to the theory of modes and modals.Contemp. Math. 131 (1992), 241–262. Zbl 0776.08003, MR 1175886
Reference: [7] A. B. Romanowska and J. D. H.  Smith: Modal Theory.Heldermann, Berlin, 1985. MR 0788695
Reference: [8] A. B. Romanowska and J. D. H.  Smith: On the structure of barycentric algebras.Houston J.  Math. 16 (1990), 431–448. MR 1089027
Reference: [9] A. B. Romanowska and J. D. H.  Smith: On the structure of semilattice sums.Czechoslovak Math.  J. 41 (1991), 24–43. MR 1087619
Reference: [10] A. B. Romanowska and J. D. H.  Smith: Embedding sums of cancellative modes into functorial sums of affine spaces.In: Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki’s 80th Birthday, J. M. Abe, S. Tanaka (eds.), IOS Press, Amsterdam, 2001, pp. 127–139. MR 1896671
Reference: [11] A. B. Romanowska, and J. D. H. Smith: Modes.World Scientific, Singapore, 2002. MR 1932199
Reference: [12] A. B. Romanowska and S.  Traina: Algebraic quasi-orders and sums of algebras.Discuss. Math. Algebra & Stochastic Methods 19 (1999), 239–263. MR 1709970
Reference: [13] A. B. Romanowska and A.  Zamojska-Dzienio: Embedding semilattice sums of cancellative modes into semimodules.Contributions to General Algebra 13 (2001), 295–303. MR 1854593
Reference: [14] J. D. H. Smith: Modes and modals.Discuss. Math. Algebra & Stochastic Methods 19 (1999), 9–40. Zbl 0937.08006, MR 1701734
.

Files

Files Size Format View
CzechMathJ_55-2005-4_14.pdf 373.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo