Previous |  Up |  Next

Article

Keywords:
Lie algebroid; Euler class; index theorem; integration over the fibre; flat connection with singularitity
Summary:
This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either $\mathbb{R}$ or $\mathop {\mathrm sl}(2,\mathbb{R})$ or $\operatorname{so} (3)$ are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to $n+1$, where $n$ is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For $\mathbb{R}$-Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf theorem for flat connections) saying that the index sum is independent of the choice of a connection. Multiplying this index sum by the orientation class of $M$, we get the Euler class of this Lie algebroid. Some integral formulae for indices are given.
References:
[1] M. Atiyah: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85 (1957), 181–207. DOI 10.1090/S0002-9947-1957-0086359-5 | MR 0086359 | Zbl 0078.16002
[2] B.  Balcerzak, J.  Kubarski, and Walas: Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid. In: Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publications, Volume  54, Institute of Mathematics, Polish Academy of Science, Warszawa, 2001, pp. 135–173. MR 1881644
[3] A. Coste, P. Dazord, and A. Weinstein: Groupoides Symplectiques. Publ. Dep. Math. Université de Lyon  1,  2/A, 1987. MR 0996653
[4] P. Dazord, D. Sondaz: Varietes de Poisson—Algebroides de Lie. Publ. Dep. Math. Université de Lyon 1, 1/B, 1988. MR 1040867
[5] S. Evens, J.-H.  Lu, A.  Weinstein: Transverse measures, the modular class, and a cohomology pairing for Lie algebroids. Quarterly J.  Math. (1999), 17–434. MR 1726784
[6] J.  Grabowski: Lie algebroids and Poisson-Nijenhuis structures. Reports on Mathematics Physics, Vol.  40 (1997). MR 1614690 | Zbl 1005.53061
[7] J.  Grabowski, P.  Urbański: Algebroids—general differential calculi on vector bundles. J.  Geom. Phys. 31 (1999), 111–141. DOI 10.1016/S0393-0440(99)00007-8 | MR 1706624
[8] W.  Greub, S.  Halperin, and R.  Vanstone: Connections, Curvature, and Cohomology. Pure and Aplied Mathematics 47, 47-II, 47-III. Academic Press, New York-London, 1971, 1973, 1976. MR 0400275
[9] J. C. Herz: Pseudo-algèbres de Lie I, II. C.  R. Acad. Sci. Paris 263 (1953), 1935–1937, 2289–2291. Zbl 0050.03201
[10] Y.  Kosmann-Schwarzbach: Exact Gerstenhaber Algebras and Lie Bialgebroids. Acta Applicandae Mathematicae 41 (1995), 153–165. DOI 10.1007/BF00996111 | MR 1362125 | Zbl 0837.17014
[11] Y.  Kosmann-Schwarzbach: The Lie Bialgebroid of a Poisson-Nijenhuis Manifold. Letters Mathematical Physics 38 (1996), 421–428. DOI 10.1007/BF01815524 | MR 1421686 | Zbl 1005.53060
[12] S.  Kobayashi, K.  Nomizu: Foundations of Differential Geometry, Vol. I. Interscience Publishers, New York-London, 1963. MR 0152974
[13] J.  Kubarski: Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism. Preprint Nr  2, Institute of Mathematics, Technical University of Łódź, August 1986. MR 0946719
[14] J.  Kubarski: Lie Algebroid of a Principal Fibre Bundle. Publ. Dep. Math. University de Lyon 1, 1/A, 1989. MR 1129261
[15] J. Kubarski: The Chern-Weil homomorphism of regular Lie algebroids. Publ. Dep. Math. University de Lyon  1, 1991.
[16] J. Kubarski: A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup. Rev. Math. Complut. 4 (1991), 159–176. MR 1145691 | Zbl 0766.17004
[17] J. Kubarski: Invariant cohomology of regular Lie algebroids. Proceedings of the VIIth  International Colloquium on Differential Geometry, Spain, July 26–30, 1994, World Scientific, Singapure, 1995, pp. 137–151. MR 1414200 | Zbl 0996.22005
[18] J.  Kubarski: Bott’s Vanishing Theorem for Regular Lie Algebroids. Transaction of the A.M.S. Vol.  348, June  1996. MR 1357399 | Zbl 0858.22009
[19] J. Kubarski: Fibre integral in regular Lie algebroids. In: New Developments in Differential Geometry, Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27–30, 1996, Kluwer Academic Publishers, , 1999, pp. 173–202. MR 1670494 | Zbl 0959.58026
[20] J.  Kubarski: Connections in regular Poisson manifolds over $\mathbb{R}$-Lie foliations. In: Banach Center Publications, Vol.  51 “Poisson geometry”, , Warszawa, 2000, pp. 141–149. MR 1764441
[21] J. Kubarski: Gysin sequence and Euler class of spherical Lie algebroids. In: Publicationes Mathematicae Debrecen, Tomus  59 vol. 3–4, 2001, pp. 245–269. MR 1874430 | Zbl 0999.22003
[22] J.  Kubarski: Weil algebra and secondary characteristic homomorphism of regular Lie algebroids. In: Lie algebroids and related topics in differential geometry, Banach Center Publications, Vol. 51, Inst. of Math. Polish Academy of Sciences, Warszawa, 2001, pp. 135–173. MR 1881653
[23] J. Kubarski: Poincaré duality for transitive unimodular invariantly oriented Lie algebroids. In: Topology and Its Applications, Vol.  121, , , 2002, pp. 333–355. MR 1908998 | Zbl 1048.58014
[24] J. Kubarski: The Euler-Poincaré-Hopf theorem for some regular $\mathbb{R}$-Lie algebroids. In: Proceedings of the Ist Colloquium on Lie Theory and Applications, Universidad de Vigo, 2002, pp. 105–112. MR 1954765
[25] A.  Kumpera: An introduction to Lie groupoids. Duplicated notes, Núcleo de Estudos e Pesquiese Cientificas, Rio de Janeiro, 1971. (The greater part of these Notes appear as the Appendix of [26]), , , , pp. .
[26] A.  Kumpera, D. C.  Spencer: Lie equations, Vol.  I: General theory. Annals of Math. Studies, No. 73, Princeton University Press, Princeton, 1972. MR 0380908
[27] P.  Libermann: Pseudogroupes infinitésimaux attachés aux pseudogroupes de Lie. Bull. Soc. Math. France 87 (1959), 409–425. DOI 10.24033/bsmf.1536 | MR 0123279 | Zbl 0198.26801
[28] P.  Libermann: Sur les prolongements des fibrés principaux et groupoides différentiables banachiques. In: Seminaire de mathématiques superieures—élé 1969, Analyse Globale, Les presses de l’Université de Montréal, Montréal, 1971, pp. 7–108. MR 0356117
[29] K.  Mackenzie: Lie Groupoids and Lie Algebroids in Differential Geometry. Cambridge University Press, Cambridge, 1987. MR 0896907 | Zbl 0683.53029
[30] K. Mackenzie: Lie algebroids and Lie pseudoalgebras. Bull. London Math. Soc. 27 (1995), 97–147. DOI 10.1112/blms/27.2.97 | MR 1325261 | Zbl 0829.22001
[31] P. Molino: Etude des feuilletages transversalement complets et applications. Ann. Sci. Ecole Norm. Sup. 10 (1977), 289–307. DOI 10.24033/asens.1328 | MR 0458446 | Zbl 0368.57007
[32] P. Molino: Riemannian Foliations. Progress in Mathematics, Vol. 73. Birkhäuser-Verlag, Boston-Basel, 1988. MR 0932463
[33] L. Maxim-Raileanu: Cohomology of Lie algebroids. An. Sti. Univ. “Al. I. Cuza” Iasi. Sect.  I a Mat.  XXII f2 (1976), 197–199. MR 0438358 | Zbl 0361.18013
[34] Ngo Van Que: Du prolongement des espaces fibrés et des structures infinitésimales. (1967), Ann. Inst. Fourier, Grenoble, 157–223.
[35] Ngo Van Que: Sur l’espace de prolongement différentiable. J.  of. Diff. Geom. 2 (1968), 33–40. DOI 10.4310/jdg/1214501135 | MR 0235587 | Zbl 0164.22604
[36] J.  Pradines: Théorie de Lie pour les groupoides differentiables. In: Atti del Convegno Internazionale di Geometria Differenziale, Bologna, September 28–30, 1967, , , 1970, pp. 233–236. Zbl 0232.22028
[37] I.  Vaisman: Complementary 2-forms of Poisson Structures. Compositio Mathematica 101 (1996), 55–75. MR 1390832 | Zbl 0853.58056
[38] I.  Vaisman: The $BV$-algebra of a Jacobi manifolds. Annales Polonici Mathematici 73 (2000), 275–290 (arXiv:math.DG/9904112). DOI 10.4064/ap-73-3-275-290 | MR 1785692
Partner of
EuDML logo