Previous |  Up |  Next

Article

Title: Riemann type integrals for functions taking values in a locally convex space (English)
Author: Marraffa, V.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 475-490
Summary lang: English
.
Category: math
.
Summary: The McShane and Kurzweil-Henstock integrals for functions taking values in a locally convex space are defined and the relations with other integrals are studied. A characterization of locally convex spaces in which Henstock Lemma holds is given. (English)
Keyword: Pettis integral
Keyword: McShane integral
Keyword: Kurzweil-Henstock integral
Keyword: locally convex spaces
MSC: 26A42
MSC: 26E20
MSC: 28B05
MSC: 46G10
idZBL: Zbl 1164.28304
idMR: MR2291749
.
Date available: 2009-09-24T11:34:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128079
.
Reference: [1] Sk.  Jaker Ali, N. D.  Chakraborty: Pettis integration in locally convex spaces.Analysis Math. 23 (1997), 241–257. MR 1629973, 10.1007/BF02789840
Reference: [2] C.  Blondia: Integration in locally convex spaces.Simon Stevin 55 (1981), 81–102. Zbl 0473.46031, MR 0635095
Reference: [3] L.  Di Piazza, K. Musiał: A characterization of variationally McShane integrable Banach-space valued functions.Illinois J.  Math. 45 (2001), 279–289. MR 1849999, 10.1215/ijm/1258138268
Reference: [4] H. G.  Garnir, M.  De Wilde, and J.  Schmets: Analyse Fonctionnelle, T. II, Mesure et Intégration dans L’Espace Euclidien  $E_n$.Birkhauser-Verlag, Basel, 1972.
Reference: [5] D. H.  Fremlin: The generalized McShane integral.Illinois J.  Math. 39 (1995), 39–67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [6] D. H.  Fremlin, J.  Mendoza: On the integration of vector-valued functions.Illinois J.  Math. 38 (1994), 127–147. MR 1245838, 10.1215/ijm/1255986891
Reference: [7] R. A.  Gordon: The McShane integral of Banach-valued functions.Illinois J.  Math. 34 (1990), 557–567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [8] V.  Marraffa: The McShane integral in a locally convex space.Rocky Mountain  J. (2006) (to appear).
Reference: [9] C. W.  McArthur, J. R.  Retherford: Some applications of an inequality in locally convex spaces.Trans. Amer. Math. Soc. 137 (1969), 115–123. MR 0239391, 10.1090/S0002-9947-1969-0239391-0
Reference: [10] S.  Nakanishi: The Henstock integral for functions with values in nuclear spaces.Math. Japonica 39 (1994), 309–335. Zbl 0927.26011, MR 1270642
Reference: [11] K.  Sakurada, S.  Nakanishi: Equivalence of the McShane and Bochner integrals for functions with values in Hilbertian (UCs-N) spaces endowed with nuclearity.Math. Japonica 47 (1998), 261–272. MR 1615121
Reference: [12] A.  Pietsch: Nuclear Locally Convex Spaces.Springer-Verlag, Berlin and New York, 1972. Zbl 0308.47024, MR 0350360
Reference: [13] S.  Rolewicz: Metric Linear Spaces.D.  Reidel Publishing Company, Warszawa, 1985. Zbl 0573.46001, MR 0808176
Reference: [14] V. A.  Skvortsov, A. P.  Solodov: A variational integral for Banach-valued functions.R.A.E. 24 (1998/9), 799–806. MR 1704751
.

Files

Files Size Format View
CzechMathJ_56-2006-2_14.pdf 380.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo