Previous |  Up |  Next

Article

Title: Involutions and semiinvolutions (English)
Author: Ishibashi, Hiroyuki
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 533-541
Summary lang: English
.
Category: math
.
Summary: We define a linear map called a semiinvolution as a generalization of an involution, and show that any nilpotent linear endomorphism is a product of an involution and a semiinvolution. We also give a new proof for Djocović’s theorem on a product of two involutions. (English)
Keyword: classical groups
Keyword: vector spaces and linear maps
Keyword: involutions
Keyword: factorization of a linear map into a product of simple ones
MSC: 15A04
MSC: 15A23
MSC: 15A33
idZBL: Zbl 1164.15302
idMR: MR2291754
.
Date available: 2009-09-24T11:35:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128084
.
Reference: [1] D. Ž. Djocović: Product of two involutions.Arch. Math. XVIII (1967), 582–584. MR 0219550
Reference: [2] E. W.  Ellers, H.  Ishibashi: Bireflectionality of the orthogonal group over a valuation domain.J.  Algebra 149 (1992), 322–325. MR 1172432, 10.1016/0021-8693(92)90019-I
Reference: [3] W. H.  Gustafson, P. R.  Halmos, and H.  Radjavi: Products of involutions.Linear Algebra Appl. 13 (1976), 157–162. MR 0399284, 10.1016/0024-3795(76)90054-9
Reference: [4] A. J.  Hahn, O. T.  O’Meara: The Classical Groups and K-Theory.Springer-Verlag, Berlin-Tokyo, 1989. MR 1007302
Reference: [5] R. Henstock: The General Theory of Integration.Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656
Reference: [6] I. N.  Herstein: Topics in Algebra (2nd ed.).John Wiley and Sons, New York, 1964. MR 0171801
Reference: [7] H. Ishibashi: Decomposition of isometries of  $U_n(V)$ over finite fields into simple isometries.Czechoslovak Math.  J. 31 (1981), 301–305. MR 0611082
Reference: [8] H.  Ishibashi: Involutary expressions for elements in  $GL_n(Z)$ and $SL_n(Z)$.Linear Algebra Appl. 219 (1995), 165–177. MR 1327398
Reference: [9] H.  Ishibashi: Groups generated by symplectic transvections over local rings.J.  Algebra 218 (1999), 26–80. Zbl 0984.20031, MR 1704675, 10.1006/jabr.1998.7837
Reference: [10] T. J.  Laffey: Products of matrices.In: Generators and Relations in Groups and Geometries. Proc. NATO ASI  (C), A.  Barlotti et al. (eds.), Kluwer Academic, Dordrecht-London, 1991, pp. 95–123. Zbl 0729.15012, MR 1206912
Reference: [11] S.  Lang: Algebra (3rd ed.).Addison Wesley, Tokyo, 1993. MR 0197234
Reference: [12] A. R.  Sourour: A factorization theorem for matrices.Linear Multilinear Alg. 19 (1986), 141–147. Zbl 0591.15008, MR 0846549
Reference: [13] B.  Zheng: Decomposition of matrices into commutators of involutions.Linear Algebra Appl. 347 (2002), 1–7. Zbl 1004.20026, MR 1899878, 10.1016/S0024-3795(01)00597-3
.

Files

Files Size Format View
CzechMathJ_56-2006-2_19.pdf 312.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo