Title:
|
Involutions and semiinvolutions (English) |
Author:
|
Ishibashi, Hiroyuki |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
533-541 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We define a linear map called a semiinvolution as a generalization of an involution, and show that any nilpotent linear endomorphism is a product of an involution and a semiinvolution. We also give a new proof for Djocović’s theorem on a product of two involutions. (English) |
Keyword:
|
classical groups |
Keyword:
|
vector spaces and linear maps |
Keyword:
|
involutions |
Keyword:
|
factorization of a linear map into a product of simple ones |
MSC:
|
15A04 |
MSC:
|
15A23 |
MSC:
|
15A33 |
idZBL:
|
Zbl 1164.15302 |
idMR:
|
MR2291754 |
. |
Date available:
|
2009-09-24T11:35:15Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128084 |
. |
Reference:
|
[1] D. Ž. Djocović: Product of two involutions.Arch. Math. XVIII (1967), 582–584. MR 0219550 |
Reference:
|
[2] E. W. Ellers, H. Ishibashi: Bireflectionality of the orthogonal group over a valuation domain.J. Algebra 149 (1992), 322–325. MR 1172432, 10.1016/0021-8693(92)90019-I |
Reference:
|
[3] W. H. Gustafson, P. R. Halmos, and H. Radjavi: Products of involutions.Linear Algebra Appl. 13 (1976), 157–162. MR 0399284, 10.1016/0024-3795(76)90054-9 |
Reference:
|
[4] A. J. Hahn, O. T. O’Meara: The Classical Groups and K-Theory.Springer-Verlag, Berlin-Tokyo, 1989. MR 1007302 |
Reference:
|
[5] R. Henstock: The General Theory of Integration.Clarendon Press, Oxford, 1991. Zbl 0745.26006, MR 1134656 |
Reference:
|
[6] I. N. Herstein: Topics in Algebra (2nd ed.).John Wiley and Sons, New York, 1964. MR 0171801 |
Reference:
|
[7] H. Ishibashi: Decomposition of isometries of $U_n(V)$ over finite fields into simple isometries.Czechoslovak Math. J. 31 (1981), 301–305. MR 0611082 |
Reference:
|
[8] H. Ishibashi: Involutary expressions for elements in $GL_n(Z)$ and $SL_n(Z)$.Linear Algebra Appl. 219 (1995), 165–177. MR 1327398 |
Reference:
|
[9] H. Ishibashi: Groups generated by symplectic transvections over local rings.J. Algebra 218 (1999), 26–80. Zbl 0984.20031, MR 1704675, 10.1006/jabr.1998.7837 |
Reference:
|
[10] T. J. Laffey: Products of matrices.In: Generators and Relations in Groups and Geometries. Proc. NATO ASI (C), A. Barlotti et al. (eds.), Kluwer Academic, Dordrecht-London, 1991, pp. 95–123. Zbl 0729.15012, MR 1206912 |
Reference:
|
[11] S. Lang: Algebra (3rd ed.).Addison Wesley, Tokyo, 1993. MR 0197234 |
Reference:
|
[12] A. R. Sourour: A factorization theorem for matrices.Linear Multilinear Alg. 19 (1986), 141–147. Zbl 0591.15008, MR 0846549 |
Reference:
|
[13] B. Zheng: Decomposition of matrices into commutators of involutions.Linear Algebra Appl. 347 (2002), 1–7. Zbl 1004.20026, MR 1899878, 10.1016/S0024-3795(01)00597-3 |
. |