Previous |  Up |  Next

Article

Title: Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion (English)
Author: Dettweiler, Johanna
Author: Neerven, Jan van
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 579-586
Summary lang: English
.
Category: math
.
Summary: Let $A={\mathrm d}/{\mathrm d}\theta $ denote the generator of the rotation group in the space $C(\Gamma )$, where $\Gamma $ denotes the unit circle. We show that the stochastic Cauchy problem \[ {\mathrm d}U(t) = AU(t)+ f\mathrm{d}b_t, \quad U(0)=0, \qquad \mathrm{(1)}\] where $b$ is a standard Brownian motion and $f\in C(\Gamma )$ is fixed, has a weak solution if and only if the stochastic convolution process $t\mapsto (f * b)_t$ has a continuous modification, and that in this situation the weak solution has a continuous modification. In combination with a recent result of Brzeźniak, Peszat and Zabczyk it follows that (1) fails to have a weak solution for all $f\in C(\Gamma )$ outside a set of the first category. (English)
Keyword: stochastic linear Cauchy problems
Keyword: nonexistence of weak solutions
Keyword: continuous modifications
Keyword: $C_0$-groups of linear operators
MSC: 34F05
MSC: 34G10
MSC: 35R15
MSC: 47D05
MSC: 47D06
MSC: 47N20
MSC: 60H15
idZBL: Zbl 1164.35520
idMR: MR2291757
.
Date available: 2009-09-24T11:35:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128087
.
Reference: [1] Z.  Brzeźniak: Some remarks on stochastic integration in 2-smooth Banach spaces.Probabilistic Methods in Fluids, I. M.  Davies, A.  Truman  et. al. (eds.), World Scientific, New Jersey, 2003, pp. 48–69. MR 2083364
Reference: [2] Z.  Brzeźniak, J. M. A. M.  van Neerven: Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem.Studia Math. 143 (2000), 43–74. MR 1814480, 10.4064/sm-143-1-43-74
Reference: [3] Z.  Brzeźniak, Sz.  Peszat, and J.  Zabczyk: Continuity of stochastic convolutions.Czechoslovak Math.  J. 51 (2001), 679–684. MR 1864035, 10.1023/A:1013752526625
Reference: [4] G.  Da Prato, J.  Zabczyk: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications.Cambridge University Press, Cambridge, 1992. MR 1207136
Reference: [5] G.  Da Prato and J.  Zabczyk: Ergodicity for Infinit-Dimensional Systems. London Math. Soc. Lect. Note Series, Vol.  229.Cambridge University Press, Cambridge, 1996. MR 1417491
Reference: [6] E.  Hausenblas, J.  Seidler: A note on maximal inequality for stochastic convolutions.Czechoslovak Math.  J. 51 (2001), 785–790. MR 1864042, 10.1023/A:1013717013421
Reference: [7] J.-P.  Kahane: Some Random Series of Functions. Second edition. Cambridge Studies in Advanced Mathematics, Vol.  5.Cambridge University Press, Cambridge, 1985. MR 0833073
Reference: [8] O.  Kallenberg: Foundations of Modern Probability. Second edition. Probability and its Applications.Springer-Verlag, New York, 2002. MR 1876169
Reference: [9] S.  Kwapień, W. A.  Woyczyński: Random Series and Stochastic Integrals: Single and Multiple. Probability and its Applications.Birkhäuser-Verlag, Boston, 1992. MR 1167198
Reference: [10] M.  Ledoux, M.  Talagrand: Probability in Banach Spaces Ergebnisse der Math. und ihrer Grenzgebiete, Vol.  23.Springer-Verlag, Berlin, 1991. MR 1102015
Reference: [11] J. M. A. M.  van Neerven, L.  Weis: Stochastic integration of functions with values in a Banach space.Studia Math. 166 (2005), 131–170. MR 2109586, 10.4064/sm166-2-2
.

Files

Files Size Format View
CzechMathJ_56-2006-2_22.pdf 338.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo