Title:
|
Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion (English) |
Author:
|
Dettweiler, Johanna |
Author:
|
Neerven, Jan van |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
56 |
Issue:
|
2 |
Year:
|
2006 |
Pages:
|
579-586 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $A={\mathrm d}/{\mathrm d}\theta $ denote the generator of the rotation group in the space $C(\Gamma )$, where $\Gamma $ denotes the unit circle. We show that the stochastic Cauchy problem \[ {\mathrm d}U(t) = AU(t)+ f\mathrm{d}b_t, \quad U(0)=0, \qquad \mathrm{(1)}\] where $b$ is a standard Brownian motion and $f\in C(\Gamma )$ is fixed, has a weak solution if and only if the stochastic convolution process $t\mapsto (f * b)_t$ has a continuous modification, and that in this situation the weak solution has a continuous modification. In combination with a recent result of Brzeźniak, Peszat and Zabczyk it follows that (1) fails to have a weak solution for all $f\in C(\Gamma )$ outside a set of the first category. (English) |
Keyword:
|
stochastic linear Cauchy problems |
Keyword:
|
nonexistence of weak solutions |
Keyword:
|
continuous modifications |
Keyword:
|
$C_0$-groups of linear operators |
MSC:
|
34F05 |
MSC:
|
34G10 |
MSC:
|
35R15 |
MSC:
|
47D05 |
MSC:
|
47D06 |
MSC:
|
47N20 |
MSC:
|
60H15 |
idZBL:
|
Zbl 1164.35520 |
idMR:
|
MR2291757 |
. |
Date available:
|
2009-09-24T11:35:38Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128087 |
. |
Reference:
|
[1] Z. Brzeźniak: Some remarks on stochastic integration in 2-smooth Banach spaces.Probabilistic Methods in Fluids, I. M. Davies, A. Truman et. al. (eds.), World Scientific, New Jersey, 2003, pp. 48–69. MR 2083364 |
Reference:
|
[2] Z. Brzeźniak, J. M. A. M. van Neerven: Stochastic convolution in separable Banach spaces and the stochastic linear Cauchy problem.Studia Math. 143 (2000), 43–74. MR 1814480, 10.4064/sm-143-1-43-74 |
Reference:
|
[3] Z. Brzeźniak, Sz. Peszat, and J. Zabczyk: Continuity of stochastic convolutions.Czechoslovak Math. J. 51 (2001), 679–684. MR 1864035, 10.1023/A:1013752526625 |
Reference:
|
[4] G. Da Prato, J. Zabczyk: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications.Cambridge University Press, Cambridge, 1992. MR 1207136 |
Reference:
|
[5] G. Da Prato and J. Zabczyk: Ergodicity for Infinit-Dimensional Systems. London Math. Soc. Lect. Note Series, Vol. 229.Cambridge University Press, Cambridge, 1996. MR 1417491 |
Reference:
|
[6] E. Hausenblas, J. Seidler: A note on maximal inequality for stochastic convolutions.Czechoslovak Math. J. 51 (2001), 785–790. MR 1864042, 10.1023/A:1013717013421 |
Reference:
|
[7] J.-P. Kahane: Some Random Series of Functions. Second edition. Cambridge Studies in Advanced Mathematics, Vol. 5.Cambridge University Press, Cambridge, 1985. MR 0833073 |
Reference:
|
[8] O. Kallenberg: Foundations of Modern Probability. Second edition. Probability and its Applications.Springer-Verlag, New York, 2002. MR 1876169 |
Reference:
|
[9] S. Kwapień, W. A. Woyczyński: Random Series and Stochastic Integrals: Single and Multiple. Probability and its Applications.Birkhäuser-Verlag, Boston, 1992. MR 1167198 |
Reference:
|
[10] M. Ledoux, M. Talagrand: Probability in Banach Spaces Ergebnisse der Math. und ihrer Grenzgebiete, Vol. 23.Springer-Verlag, Berlin, 1991. MR 1102015 |
Reference:
|
[11] J. M. A. M. van Neerven, L. Weis: Stochastic integration of functions with values in a Banach space.Studia Math. 166 (2005), 131–170. MR 2109586, 10.4064/sm166-2-2 |
. |