Previous |  Up |  Next


prime submodules; primary submodules; primary decomposition
In this paper we characterize all prime and primary submodules of the free $R$-module $R^{n}$ for a principal ideal domain $R$ and find the minimal primary decomposition of any submodule of $R^{n}$. In the case $n=2$, we also determine the height of prime submodules.
[1] S. M. George, R. Y. McCasland and P. F. Smith: A principal ideal theorem analogue for modules over commutative rings. Comm. Algebra 22 (1994), 2083–2099. DOI 10.1080/00927879408824957 | MR 1268545
[2] C. P. Lu: Prime submodules of modules. Comment. Math. Univ. St. Paul 33 (1984), 61–69. MR 0741378 | Zbl 0575.13005
[3] H. Matsumura: Commutative Ring Theory. Cambridge University Press, 1986. MR 0879273 | Zbl 0603.13001
[4] R. Y. Sharp: Steps in Commutative Algebra. Cambridge University Press, 1990. MR 1070568 | Zbl 0703.13001
[5] Y. Tiras and A. Harmanci: On prime submodules and primary decomposition. Czechoslovak Math. J. 50 (2000), 83–90. DOI 10.1023/A:1022441220553 | MR 1745462
Partner of
EuDML logo