Previous |  Up |  Next

Article

Title: Some liftings of Poisson structures to Weil bundles (English)
Author: Dębecki, Jacek
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 677-687
Summary lang: English
.
Category: math
.
Summary: We establish a formula for the Schouten-Nijenhuis bracket of linear liftings of skew-symmetric tensor fields to any Weil bundle. As a result we obtain a construction of some liftings of Poisson structures to Weil bundles. (English)
Keyword: natural operator
Keyword: product preserving bundle functor
Keyword: Weil algebra
Keyword: Poisson structure
MSC: 53D17
MSC: 58A32
idZBL: Zbl 1164.58308
idMR: MR2291766
.
Date available: 2009-09-24T11:36:51Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128096
.
Reference: [1] J.  Dębecki: Linear liftings of skew-symmetric tensor fields to Weil bundles.Czechoslovak Math.  J 55(130) (2005), 809-816. MR 2153104, 10.1007/s10587-005-0067-0
Reference: [2] D. J.  Eck: Product-preserving functors on smooth manifolds.J.  Pure Appl. Algebra 42 (1986), 133–140. Zbl 0615.57019, MR 0857563, 10.1016/0022-4049(86)90076-9
Reference: [3] J.  Gancarzewicz, W.  Mikulski, and Z.  Pogoda: Lifts of some tensor fields and connections to product preserving functors.Nagoya Math.  J. 135 (1994), 1–41. MR 1295815, 10.1017/S0027763000004931
Reference: [4] J.  Grabowski, P.  Urbański: Tangent lifts of Poisson and related structures.J.  Phys.  A, Math. Gen. 28 (1995), 6743–6777. MR 1381143, 10.1088/0305-4470/28/23/024
Reference: [5] G.  Kainz, P. W.  Michor: Natural transformations in differential geometry.Czechoslovak Mat.  J. 37(112) (1987), 584–607. MR 0913992
Reference: [6] I.  Kolář: On the natural operators on vector fields.Ann. Global Anal. Geom. 6 (1988), 109–117. MR 0982760, 10.1007/BF00133034
Reference: [7] I.  Kolář: Jet-like approach to Weil bundles.Seminar Lecture Notes, Masaryk University, Brno, 2001.
Reference: [8] I.  Kolář, P.  W.  Michor, J.  Slovák: Natural Operations in Differential Geometry.Springer-Verlag, Berlin, 1993. MR 1202431
Reference: [9] O. O.  Luciano: Categories of multiplicative functors and Weil’s infinitely near points.Nagoya Math.  J. 109 (1988), 69–89. Zbl 0661.58007, MR 0931952, 10.1017/S0027763000002774
Reference: [10] W. M.  Mikulski: The linear natural operators lifting $2$-vector fields to some Weil bundles.Note Mat. 19 (1999), 213–217. Zbl 1008.58004, MR 1816875
Reference: [11] I.  Vaisman: Lectures on the Geometry of Poisson Manifolds.Birkhäuser-Verlag, Basel, 1994. Zbl 0810.53019, MR 1269545
.

Files

Files Size Format View
CzechMathJ_56-2006-2_31.pdf 331.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo