Previous |  Up |  Next

Article

Title: Estimates of global dimension (English)
Author: Jiaqun, Wei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 773-780
Summary lang: English
.
Category: math
.
Summary: In this note we show that for a $\ast ^{n}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop {\mathrm End}_{R}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$. (English)
Keyword: global dimension
Keyword: $\ast $-module
MSC: 16D90
MSC: 16E10
MSC: 16E30
idZBL: Zbl 1157.16301
idMR: MR2291774
.
Date available: 2009-09-24T11:37:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128104
.
Reference: [1] R. Colpi: Some remarks on equivalences between categories of modules.Commun. Algebra 18 (1990), 1935–1951. Zbl 0708.16002, MR 1071082, 10.1080/00927879008824002
Reference: [2] R. Colpi: Tilting modules and $\ast $-modules.Commun. Algebra 21 (1993), 1095–1102. MR 1209922, 10.1080/00927879308824612
Reference: [3] R. Colpi, C.  Menini: On the structure of $\ast $-modules.J. Algebra 158 (1993), 400–419. MR 1226797, 10.1006/jabr.1993.1138
Reference: [4] R. Colpi, J. Trlifaj: Classes of generalized $\ast $-modules.Commun. Algebra 22 (1994), 3985–3995. MR 1280103, 10.1080/00927879408825060
Reference: [5] K. R. Fuller: $\ast $-modules over ring extensions.Commun. Algebra 25 (1997), 2839–2860. MR 1458733, 10.1080/00927879708826026
Reference: [6] I. Kaplansky: Projective modules.Ann. Math. 68 (1958), 372–377. Zbl 0083.25802, MR 0100017, 10.2307/1970252
Reference: [7] Y. Miyashita: Tilting modules of finite projective dimension.Math. Zeit. 193 (1986), 113–146. Zbl 0578.16015, MR 0852914, 10.1007/BF01163359
Reference: [8] C. Menini, A. Orsatti: Representable equivalences between categories of modules and applications.Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231. MR 1049594
Reference: [9] M. Sato: Fuller’s Theorem on equivalences.J.  Algebra 52 (1978), 174–184. Zbl 0374.16024, MR 0485993
Reference: [10] J. Trlifaj: Dimension estimates for representable equivalences of module categories.J.  Algebra 193 (1997), 660–676. Zbl 0884.16005, MR 1458808, 10.1006/jabr.1996.7005
Reference: [11] J. Trlifaj: $\ast $-modules are finitely generated.J.  Algebra 169 (1994), 392–398. 10.1006/jabr.1994.1291
Reference: [12] J. Wei: Global dimension of the endomorphism ring and $\ast ^n$modules.J. Algebra 291 (2005), 238–249. MR 2158520, 10.1016/j.jalgebra.2005.05.019
Reference: [13] J. Wei: $(n,t)$-quasi-projective and equivalences.Commun. Algebra (to appear). Zbl 1107.16012, MR 2184002
Reference: [14] J. Wei, Z.  Huang, W. Tong, and J. Huang: Tilting modules of finite projective dimension and a generalization of $\ast $-modules.J.  Algebra 268 (2003), 404–418. MR 2009316, 10.1016/S0021-8693(03)00143-1
Reference: [15] B. Zimmerman-Huisgen: Endomorphism rings of self-generators.Pacific J.  Math. 61 (1975), 587–602. MR 0404322, 10.2140/pjm.1975.61.587
.

Files

Files Size Format View
CzechMathJ_56-2006-2_39.pdf 311.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo