Previous |  Up |  Next

Article

Title: On integration of vector functions with respect to vector measures (English)
Author: Rodríguez, José
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 805-825
Summary lang: English
.
Category: math
.
Summary: We study integration of Banach space-valued functions with respect to Banach space-valued measures. We focus our attention on natural extensions to this setting of the Birkhoff and McShane integrals. The corresponding generalization of the Birkhoff integral was first considered by Dobrakov under the name $S^{*}$-integral. Our main result states that $S^{*}$-integrability implies McShane integrability in contexts in which the later notion is definable. We also show that a function is measurable and McShane integrable if and only if it is Dobrakov integrable (i.e. Bartle *-integrable). (English)
Keyword: Bartle $^*$-integral
Keyword: Dobrakov integral
Keyword: McShane integral
Keyword: Birkhoff integral
Keyword: $S^*$-integral
MSC: 28B05
MSC: 46G10
idZBL: Zbl 1164.28305
idMR: MR2261655
.
Date available: 2009-09-24T11:38:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128108
.
Reference: [1] R. G.  Bartle: A general bilinear vector integral.Studia Math. 15 (1956), 337–352. Zbl 0070.28102, MR 0080721, 10.4064/sm-15-3-337-352
Reference: [2] G. Birkhoff: Integration of functions with values in a Banach space.Trans. Amer. Math. Soc. 38 (1935), 357–378. Zbl 0013.00803, MR 1501815
Reference: [3] B. Cascales, J. Rodríguez: The Birkhoff integral and the property of Bourgain.Math. Ann. 331 (2005), 259–279. MR 2115456, 10.1007/s00208-004-0581-7
Reference: [4] L. Di Piazza, D. Preiss: When do McShane and Pettis integrals coincide? Illinois J.Math. 47 (2003), 1177–1187. MR 2036997, 10.1215/ijm/1258138098
Reference: [5] J. Diestel, J. J.  Uhl, Jr.: Vector Measures. Mathematical Surveys, No.  15.American Mathematical Society, Providence, 1977. MR 0453964
Reference: [6] I. Dobrakov: On integration in Banach spaces I.Czechoslovak Math. J. 20(95) (1970), 511–536. Zbl 0215.20103, MR 0365138
Reference: [7] I. Dobrakov: On representation of linear operators on  $C_0(T,{\mathrm X})$.Czechoslovak Math.  J. 21(96) (1971), 13–30. MR 0276804
Reference: [8] I. Dobrakov: On integration in Banach spaces VII.Czechoslovak Math.  J. 38(113) (1988), 434–449. Zbl 0674.28003, MR 0950297
Reference: [9] I. Dobrakov, P. Morales: On integration in Banach spaces VI.Czechoslovak Math.  J. 35(110) (1985), 173–187. MR 0787123
Reference: [10] N. Dunford, J. T.  Schwartz: Linear Operators. Part I.Wiley Classics Library, John Wiley & Sons, New York, 1988, General theory, with the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958  original, A Wiley-Interscience Publication. MR 1009162
Reference: [11] D. H.  Fremlin: Four problems in measure theory. Version of 30.7.03.Available at URL http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm. MR 1258546
Reference: [12] D. H. Fremlin: The McShane and Birkhoff integrals of vector-valued functions.University of Essex Mathematics Department Research Report 92-10, version of 13.10.04. Available at URL http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm.
Reference: [13] D. H. Fremlin: Problem ET, version of 27.10.04.Available at URL http://www.essex.ac.uk/maths/staff/fremlin/problems.htm.
Reference: [14] D. H. Fremlin: The generalized McShane integral.Illinois J.  Math. 39 (1995), 39–67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [15] D. H. Fremlin: Measure Theory, Vol.  4: Topological Measure Spaces.Torres Fremlin, Colchester, 2003. MR 2462372
Reference: [16] D. H.  Fremlin, J. Mendoza: On the integration of vector-valued functions.Illinois J.  Math. 38 (1994), 127–147. MR 1245838, 10.1215/ijm/1255986891
Reference: [17] F. J.  Freniche, J. C.  García-Vázquez: The Bartle bilinear integration and Carleman operators.J.  Math. Anal. Appl. 240 (1999), 324–339. MR 1731648, 10.1006/jmaa.1999.6575
Reference: [18] T. H.  Hildebrandt: Integration in abstract spaces.Bull. Amer. Math. Soc. 59 (1953), 111–139. Zbl 0051.04201, MR 0053191, 10.1090/S0002-9904-1953-09694-X
Reference: [19] B. Jefferies, S. Okada: Bilinear integration in tensor products.Rocky Mountain J.  Math. 28 (1998), 517–545. MR 1651584, 10.1216/rmjm/1181071785
Reference: [20] A. N. Kolmogorov: Untersuchungen über Integralbegriff.Math. Ann. 103 (1930), 654–696. 10.1007/BF01455714
Reference: [21] R. Pallu de La Barrière: Integration of vector functions with respect to vector measures.Studia Univ. Babeş-Bolyai Math. 43 (1998), 55–93. MR 1855339
Reference: [22] T. V.  Panchapagesan: On the distinguishing features of the Dobrakov integral.Divulg. Mat. 3 (1995), 79–114. Zbl 0883.28011, MR 1374668
Reference: [23] J. Rodríguez: On the existence of Pettis integrable functions which are not Birkhoff integrable.Proc. Amer. Math. Soc. 133 (2005), 1157–1163. MR 2117218, 10.1090/S0002-9939-04-07665-8
Reference: [24] G. F.  Stefánsson: Integration in vector spaces.Illinois J.  Math. 45 (2001), 925–938. MR 1879244, 10.1215/ijm/1258138160
Reference: [25] : Selected Works of A. N.  Kolmogorov. Vol. I: Mathematics and Mechanics, Mathematics and its Applications (Soviet Series), Vol. 25.V. M.  Tikhomirov (ed.), Kluwer Academic Publishers Group, Dordrecht, 1991, with commentaries by V. I.  Arnol’d, V. A.  Skvortsov, P. L.  Ul’yanov et al. Translated from the Russian original by V. M.  Volosov. MR 1175399
.

Files

Files Size Format View
CzechMathJ_56-2006-3_2.pdf 421.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo