Previous |  Up |  Next

Article

Title: Boundary functions in $L^2H(\mathbb{B}^n)$ (English)
Author: Kot, Piotr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 29-47
Summary lang: English
.
Category: math
.
Summary: We solve the Dirichlet problem for line integrals of holomorphic functions in the unit ball: For a function $u$ which is lower semi-continuous on $\partial \mathbb{B}^{n}$ we give necessary and sufficient conditions in order that there exists a holomorphic function $f\in \mathbb{O}(\mathbb{B}^{n})$ such that \[ u(z)=\int _{|\lambda |<1}\left|f(\lambda z)\right|^{2}\mathrm{d}{\mathfrak L}^{2}(\lambda ). \] (English)
Keyword: boundary behavior of holomorphic functions
Keyword: exceptional sets
Keyword: boundary functions
Keyword: computed tomography
Keyword: Dirichlet problem
MSC: 30B30
MSC: 32A10
MSC: 32A40
idZBL: Zbl 1174.30001
idMR: MR2309946
.
Date available: 2009-09-24T11:43:31Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128152
.
Reference: [1] J. Chaumat, oral communication: Seminar on Complex Analysis at the Institute of Mathematics at Jagiellonian University.1988.
Reference: [2] A. Faridani: Mathematical problems in computed tomography, Proceedings of the 1999 Mathematical Geophysics Summerschool held at Stanford University. Published online at http:/cartan.stanford.edu/mgss/html/1999_proceedings.html..
Reference: [3] J. Globevnik: Holomorphic functions which are highly nonintegrable at the boundary.Isr. J. Math. 115 (2000), 195–203. Zbl 0948.32015, MR 1749678
Reference: [4] P. Jakóbczak: The exceptional sets for functions from the Bergman space.Port. Math. 50 (1993), 115–128. MR 1300590
Reference: [5] P. Jakóbczak: The exceptional sets for holomorphic functions in Hartogs domains, Complex Variables.Theory Appl. 32 (1997), 89–97. MR 1448482, 10.1080/17476939708814981
Reference: [6] P. Jakóbczak: Description of exceptional sets in the circles for functions from the Bergman space.Czechoslovak Math. J. 47 (1997), 633–649. MR 1479310, 10.1023/A:1022866501339
Reference: [7] P. Jakóbczak: Highly non-integrable functions in the unit ball.Isr. J. Math. 97 (1997), 175–181. 10.1007/BF02774034
Reference: [8] P. Jakóbczak: Exceptional sets of slices for functions from the Bergman space in the ball.Can. Math. Bull. 44 (2001), 150–159. MR 1827853, 10.4153/CMB-2001-019-7
Reference: [9] P. Kot: Description of simple exceptional sets in the unit ball.Czechoslovak Math. J. 54 (2004), 55–63. Zbl 1052.30006, MR 2040218, 10.1023/B:CMAJ.0000027246.96443.28
Reference: [10] P. Pflug: oral communication, 4-th Symposium on Classical Analysis, Kazimierz.(1987).
Reference: [11] W. Rudin: Function theory in the unit ball of $\mathbb{C}^{n}$.Springer, New York, 1980. MR 0601594
Reference: [12] P. Wojtaszczyk: On highly nonintegrable functions and homogeneous polynomials.Ann. Pol. Math. 65 (1997), 245–251. Zbl 0872.32001, MR 1441179, 10.4064/ap-65-3-245-251
.

Files

Files Size Format View
CzechMathJ_57-2007-1_3.pdf 415.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo