Title:
|
Boundary functions in $L^2H(\mathbb{B}^n)$ (English) |
Author:
|
Kot, Piotr |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
29-47 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We solve the Dirichlet problem for line integrals of holomorphic functions in the unit ball: For a function $u$ which is lower semi-continuous on $\partial \mathbb{B}^{n}$ we give necessary and sufficient conditions in order that there exists a holomorphic function $f\in \mathbb{O}(\mathbb{B}^{n})$ such that \[ u(z)=\int _{|\lambda |<1}\left|f(\lambda z)\right|^{2}\mathrm{d}{\mathfrak L}^{2}(\lambda ). \] (English) |
Keyword:
|
boundary behavior of holomorphic functions |
Keyword:
|
exceptional sets |
Keyword:
|
boundary functions |
Keyword:
|
computed tomography |
Keyword:
|
Dirichlet problem |
MSC:
|
30B30 |
MSC:
|
32A10 |
MSC:
|
32A40 |
idZBL:
|
Zbl 1174.30001 |
idMR:
|
MR2309946 |
. |
Date available:
|
2009-09-24T11:43:31Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128152 |
. |
Reference:
|
[1] J. Chaumat, oral communication: Seminar on Complex Analysis at the Institute of Mathematics at Jagiellonian University.1988. |
Reference:
|
[2] A. Faridani: Mathematical problems in computed tomography, Proceedings of the 1999 Mathematical Geophysics Summerschool held at Stanford University. Published online at http:/cartan.stanford.edu/mgss/html/1999_proceedings.html.. |
Reference:
|
[3] J. Globevnik: Holomorphic functions which are highly nonintegrable at the boundary.Isr. J. Math. 115 (2000), 195–203. Zbl 0948.32015, MR 1749678 |
Reference:
|
[4] P. Jakóbczak: The exceptional sets for functions from the Bergman space.Port. Math. 50 (1993), 115–128. MR 1300590 |
Reference:
|
[5] P. Jakóbczak: The exceptional sets for holomorphic functions in Hartogs domains, Complex Variables.Theory Appl. 32 (1997), 89–97. MR 1448482, 10.1080/17476939708814981 |
Reference:
|
[6] P. Jakóbczak: Description of exceptional sets in the circles for functions from the Bergman space.Czechoslovak Math. J. 47 (1997), 633–649. MR 1479310, 10.1023/A:1022866501339 |
Reference:
|
[7] P. Jakóbczak: Highly non-integrable functions in the unit ball.Isr. J. Math. 97 (1997), 175–181. 10.1007/BF02774034 |
Reference:
|
[8] P. Jakóbczak: Exceptional sets of slices for functions from the Bergman space in the ball.Can. Math. Bull. 44 (2001), 150–159. MR 1827853, 10.4153/CMB-2001-019-7 |
Reference:
|
[9] P. Kot: Description of simple exceptional sets in the unit ball.Czechoslovak Math. J. 54 (2004), 55–63. Zbl 1052.30006, MR 2040218, 10.1023/B:CMAJ.0000027246.96443.28 |
Reference:
|
[10] P. Pflug: oral communication, 4-th Symposium on Classical Analysis, Kazimierz.(1987). |
Reference:
|
[11] W. Rudin: Function theory in the unit ball of $\mathbb{C}^{n}$.Springer, New York, 1980. MR 0601594 |
Reference:
|
[12] P. Wojtaszczyk: On highly nonintegrable functions and homogeneous polynomials.Ann. Pol. Math. 65 (1997), 245–251. Zbl 0872.32001, MR 1441179, 10.4064/ap-65-3-245-251 |
. |