Previous |  Up |  Next

Article

Title: Existence and iteration of positive solutions for a singular two-point boundary value problem with a $p$-Laplacian operator (English)
Author: Ma, De-xiang
Author: Ge, Wei-Gao
Author: Gui, Zhan-Ji
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 135-152
Summary lang: English
.
Category: math
.
Summary: In the paper, we obtain the existence of symmetric or monotone positive solutions and establish a corresponding iterative scheme for the equation $(\phi _p(u^{\prime }))^{\prime }+q(t)f(u)=0$, $0<t<1$, where $\phi _p(s):=|s|^{p-2}s$, $p>1$, subject to nonlinear boundary condition. The main tool is the monotone iterative technique. Here, the coefficient $q(t)$ may be singular at $t=0,1$. (English)
Keyword: iteration
Keyword: symmetric and monotone positive solution
Keyword: nonlinear boundary value problem
Keyword: $p$-Laplacian
MSC: 34A45
MSC: 34B10
MSC: 34B15
MSC: 34B18
idZBL: Zbl 1174.34018
idMR: MR2309955
.
Date available: 2009-09-24T11:44:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128161
.
Reference: [1] J. Wang: The existence of positive solutions for the one-dimensional $p$-Laplacian.Proc. Am. Math. Soc. 125 (1997), 2275–2283. Zbl 0884.34032, MR 1423340, 10.1090/S0002-9939-97-04148-8
Reference: [2] L.  Kong, J. Wang: Multiple positive solutions for the one-dimensional $p$-Laplacian.Nonlinear Analysis 42 (2000), 1327–1333. MR 1784078, 10.1016/S0362-546X(99)00143-1
Reference: [3] D. Guo, V. Lakshmikantham: Nonlinear Problems in Abstract. Cones.Academic Press, Boston, 1988. MR 0959889
Reference: [4] X.  He, W.  Ge: Twin positive solutions for the one-dimensional $p$-Laplacian.Nonlinear Analysis 56 (2004), 975–984. Zbl 1061.34013, MR 2038732, 10.1016/j.na.2003.07.022
Reference: [5] R. I. Avery, C. J. Chyan, and J. Henderson: Twin solutions of boundary value problems for ordinary differential equations and finite difference equations.Comput. Math. Appl. 42 (2001), 695–704. MR 1838025, 10.1016/S0898-1221(01)00188-2
Reference: [6] R. P. Agarwal, H.  Lü and D. O’Regan: Eigenvalues and the one-dimensional $p$-Laplacian.J.  Math. Anal. Appl. 266 (2002), 383–340. MR 1880513, 10.1006/jmaa.2001.7742
Reference: [7] Y.  Guo, W.  Ge: Three positive solutions for the one-dimensional $p$-Laplacian.Nonlinear Analysis 286 (2003), 491–508. Zbl 1045.34005, MR 2008845
Reference: [8] H. Amann: Fixed point equations and nonlinear eigenvalue problems in order Banach spaces.SIAM Rev. 18 (1976), 620–709. MR 0415432, 10.1137/1018114
.

Files

Files Size Format View
CzechMathJ_57-2007-1_12.pdf 369.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo