Previous |  Up |  Next

Article

Title: 3-Selmer groups for curves $y^2=x^3+a$ (English)
Author: Bandini, Andrea
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 2
Year: 2008
Pages: 429-445
Summary lang: English
.
Category: math
.
Summary: We explicitly perform some steps of a 3-descent algorithm for the curves $y^2=x^3+a$, $a$ a nonzero integer. In general this will enable us to bound the order of the 3-Selmer group of such curves. (English)
Keyword: elliptic curves
Keyword: Selmer groups
MSC: 11G05
MSC: 11Y50
idZBL: Zbl 1174.11048
idMR: MR2411099
.
Date available: 2009-09-24T11:55:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128267
.
Reference: [1] A.  Bandini: Three-descent and the Birch and Swinnerton-Dyer conjecture.Rocky  Mt. J.  Math. 34 (2004), 13–27. Zbl 1083.11040, MR 2061115, 10.1216/rmjm/1181069889
Reference: [2] J. W. S.  Cassels: Arithmetic on curves of genus  1. VIII:  On conjectures of Birch and Swinnerton-Dyer.J.  Reine Angew. Math. 217 (1965), 180–199. Zbl 0241.14017, MR 0179169
Reference: [3] Z.  Djabri, E. F.  Schaefer, N. P.  Smart: Computing the $p$-Selmer group of an elliptic curve.Trans. Am. Math. Soc. 352 (2000), 5583–5597. MR 1694286, 10.1090/S0002-9947-00-02535-6
Reference: [4] K.  Rubin: Tate-Shafarevich groups and $L$-functions of elliptic curves with complex multiplication.Invent. Math. 89 (1987), 527–560. Zbl 0628.14018, MR 0903383, 10.1007/BF01388984
Reference: [5] K. Rubin: The “main conjectures” of Iwasawa theory for imaginary quadratic fields.Invent. Math. 103 (1991), 25–68. Zbl 0737.11030, MR 1079839, 10.1007/BF01239508
Reference: [6] P.  Satgé: Groupes de Selmer et corpes cubiques.J.  Number Theory 23 (1986), 294–317. MR 0846960, 10.1016/0022-314X(86)90075-2
Reference: [7] E. F.  Schaefer, M.  Stoll: How to do a $p$-descent on an elliptic curve.Trans. Am. Math. Soc. 356 (2004), 1209–1231. MR 2021618, 10.1090/S0002-9947-03-03366-X
Reference: [8] E. F.  Schaefer: Class groups and Selmer groups.J.  Number Theory 56 (1996), 79–114. Zbl 0859.11034, MR 1370197, 10.1006/jnth.1996.0006
Reference: [9] J. H.  Silverman: The Arithmetic of Elliptic Curves.Graduate Texts in Mathematics, Vol.  106, Springer, New York, 1986. Zbl 0585.14026, MR 0817210
Reference: [10] J. H.  Silverman: Advanced Topics in the Arithmetic of Elliptic Curves.Graduate Texts in Mathematics, Vol.  151, Springer, New York, 1994. Zbl 0911.14015, MR 1312368, 10.1007/978-1-4612-0851-8
Reference: [11] M.  Stoll: On the arithmetic of the curves $y^2=x^l+A$ and their Jacobians.J.  Reine Angew. Math. 501 (1998), 171–189. MR 1637841, 10.1515/crll.1998.076
Reference: [12] M.  Stoll: On the arithmetic of the curves $y^2=x^l+A$.  II.J.  Number Theory 93 (2002), 183–206. MR 1899302, 10.1006/jnth.2001.2727
Reference: [13] J.  Top: Descent by 3-isogeny and 3-rank of quadratic fields.In: Advances in Number Theory, F. Q.  Gouvea, N.  Yui (eds.), Clarendon Press, Oxford, 1993, pp. 303–317. Zbl 0804.11040, MR 1368429
.

Files

Files Size Format View
CzechMathJ_58-2008-2_9.pdf 339.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo