Previous |  Up |  Next

Article

Title: Flow prolongation of some tangent valued forms (English)
Author: Cabras, Antonella
Author: Kolář, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 2
Year: 2008
Pages: 493-504
Summary lang: English
.
Category: math
.
Summary: We study the prolongation of semibasic projectable tangent valued $k$-forms on fibered manifolds with respect to a bundle functor $F$ on local isomorphisms that is based on the flow prolongation of vector fields and uses an auxiliary linear $r$-th order connection on the base manifold, where $r$ is the base order of $F$. We find a general condition under which the Frölicher-Nijenhuis bracket is preserved. Special attention is paid to the curvature of connections. The first order jet functor and the tangent functor are discussed in detail. Next we clarify how this prolongation procedure can be extended to arbitrary projectable tangent valued $k$-forms in the case $F$ is a fiber product preserving bundle functor on the category of fibered manifolds with $m$-dimensional bases and local diffeomorphisms as base maps. (English)
Keyword: semibasic tangent valued $k$-form
Keyword: Frölicher-Nijenhuis bracket
Keyword: bundle functor
Keyword: flow prolongation of vector fields
Keyword: connection
Keyword: curvature
MSC: 53C05
MSC: 58A20
idZBL: Zbl 1174.53312
idMR: MR2411105
.
Date available: 2009-09-24T11:56:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128273
.
Reference: [1] A. Cabras and I. Kolář: Prolongation of tangent valued forms to Weil bundles.Archivum Math. (Brno) 31 (1995), 139–145. MR 1357981
Reference: [2] M. Doupovec and I. Kolář: Iteration of fiber product preserving bundle functors.Monatsh Math. 134 (2001), 39–50. MR 1872045, 10.1007/s006050170010
Reference: [3] J. Gancarzewicz, W. Mikulski and Z. Pogoda: Lifts of some tensor fields and connections to product preserving bundles.Nagoya Math. J. 135 (1994), 1–41. MR 1295815, 10.1017/S0027763000004931
Reference: [4] I. Kolář: On the geometry of fiber product preserving bundle functors.Proceedings of 8th ICDGA, Silesian University, Opava (2002), 85–92. MR 1978765
Reference: [5] I. Kolář: On the flow prolongation of vector fields.Proceedings of Geometric Seminar, Kazan 24 (2003), 69–80.
Reference: [6] I. Kolář, P. W. Michor and J. Slovák: Natural Operations in Differential Geometry.Springer-Verlag, 1993. MR 1202431
Reference: [7] I. Kolář and W. M. Mikulski: On the fiber product preserving bundle functors.Differential Geometry and Its Applications 11 (1999), 105–115. MR 1712139, 10.1016/S0926-2245(99)00022-4
Reference: [8] I. Kolář and W. M. Mikulski: Natural lifting of connections to vertical bundles.Suppl. Rendiconti Circolo Mat. Palermo, Serie II 63 (2000), 97–102. MR 1758084
Reference: [9] I. Kolář and M. Modugno: Natural maps on the iterated jet prolongation of a fibered manifold.Annali do Mat. pura ed applicata CLVIII (1991), 151–165. MR 1131848
Reference: [10] I. Kolář and M. Modugno: The Frölicher-Nijenhuis bracket on some functional spaces.Annales Polonici Mat. LXVII (1998), 97–106. MR 1610540
Reference: [11] L. Mangiarotti and M. Modugno: New operators on jet spaces.Ann. Fac. Sci. Toulouse 2 (1983), 171–198. MR 0735661
Reference: [12] M. Modugno: Differential calculus on fibered manifolds.Manuscript.
Reference: [13] A. Morimoto: Prolongations of connections to bundles of infinitely near points.J. Diff. Geometry 11 (1976), 479–498. MR 0445422, 10.4310/jdg/1214433720
.

Files

Files Size Format View
CzechMathJ_58-2008-2_15.pdf 291.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo