Previous |  Up |  Next

Article

Title: Two sided norm estimate of the Bergman projection on $L^p$ spaces (English)
Author: Dostanić, Milutin R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 2
Year: 2008
Pages: 569-575
Summary lang: English
.
Category: math
.
Summary: We give some explicit values of the constants $C_{1}$ and $C_{2}$ in the inequality $C_{1}/{\sin (\frac{\pi }{p})}\le \left| P\right| _{p}\le C_{2}/{\sin (\frac{\pi }{p})}$ where $\left| P\right| _{p}$ denotes the norm of the Bergman projection on the $L^{p}$ space. (English)
MSC: 32A25
MSC: 46E15
MSC: 46E30
MSC: 47B38
idZBL: Zbl 1174.46018
idMR: MR2411110
.
Date available: 2009-09-24T11:57:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128278
.
Reference: [1] R. M. Range: Holomorphic Functions and Integral Representations in Several Complex Variables.Springer-Verlag, 1986. Zbl 0591.32002, MR 0847923
Reference: [2] K. Zhu: Operator Theory in Function Spaces.Marcel Dekker, New York, 1990. Zbl 0706.47019, MR 1074007
Reference: [3] K. Zhu: A sharp norm estimate of the Bergman projection.. Zbl 1105.32006
.

Files

Files Size Format View
CzechMathJ_58-2008-2_20.pdf 232.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo