Title:
|
Two sided norm estimate of the Bergman projection on $L^p$ spaces (English) |
Author:
|
Dostanić, Milutin R. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
569-575 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give some explicit values of the constants $C_{1}$ and $C_{2}$ in the inequality $C_{1}/{\sin (\frac{\pi }{p})}\le \left| P\right| _{p}\le C_{2}/{\sin (\frac{\pi }{p})}$ where $\left| P\right| _{p}$ denotes the norm of the Bergman projection on the $L^{p}$ space. (English) |
MSC:
|
32A25 |
MSC:
|
46E15 |
MSC:
|
46E30 |
MSC:
|
47B38 |
idZBL:
|
Zbl 1174.46018 |
idMR:
|
MR2411110 |
. |
Date available:
|
2009-09-24T11:57:03Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128278 |
. |
Reference:
|
[1] R. M. Range: Holomorphic Functions and Integral Representations in Several Complex Variables.Springer-Verlag, 1986. Zbl 0591.32002, MR 0847923 |
Reference:
|
[2] K. Zhu: Operator Theory in Function Spaces.Marcel Dekker, New York, 1990. Zbl 0706.47019, MR 1074007 |
Reference:
|
[3] K. Zhu: A sharp norm estimate of the Bergman projection.. Zbl 1105.32006 |
. |