Previous |  Up |  Next

Article

References:
[1] B. Banaschewski and R. Harting: Lattice aspects of radical ideals and choice principles. Proc. London Math. Soc. (3) 50 (1985), 384–404. MR 0779396
[2] B. Banaschewski and C. J. Mulvey: Stone-Čech compactification of locales I. Houston J. Math. 6 (1980), 301–312. MR 0597771
[3] A. Czászár: General topology. Akademiai Kiado, Budapest, 1978.
[4] E. Čech: Topological spaces. Academia, Praha, 1966. MR 0211373
[5] C. H. Dowker and D. Strauss: Separation axioms for frames. Coll. Math. Soc. Janos Bolyai 8 (1974), 223–240. MR 0394559
[6] C. H. Dowker and D. Strauss: $T_1$- and $T_2$-axioms for frames. Aspects of Topology: In Memory of Hugh Dowker, L. M. S. Lecture Notes Series No. 93, Cambridge University Press, 1985, pp. 325–335. MR 0787838
[7] C. H. Dowker and D. Strauss: Sums in the category of frames. Houston J. Math. 3 (1976), 17–32. MR 0442900
[8] H. Herrlich: Topologische Reflexionen und Coreflexionen. Lect. Notes in Math. 78, Springer-Verlag, 1968. MR 0256332 | Zbl 0182.25302
[9] J. R. Isbell: Atomless parts of spaces. Math. Scand. 31 (1972), 5–32. MR 0358725 | Zbl 0246.54028
[10] P. T. Johnstone: Stone spaces. Cambridge University Press, 1982. MR 0698074 | Zbl 0499.54001
[11] P. T. Johnstone and Sun Shu-Hao: Weak products and Hausdorff locales. preprint.
[12] J. I. Kerstan: Verallgemeinerung eines Satzes von Tarski. Math. Nachr. 17 (1958–9), 16–18. MR 0096599
[13] I. Kříž: A constructive proof of the Tychonoff’s theorem for locales. Comm. Math, Univ. Carolinae 26, 3 (1985), 619–630. MR 0817832
[14] G. S. Murchiston and M. G. Stanley: A "$T_1$" space with no closed points and a "$T_1$" locale which is not "$T_1$". Math. Proc. Cambridge Philos. Soc. 85 (1984), 421–422. DOI 10.1017/S0305004100061739 | MR 0755830
[15] A. Pultr: Some recent results of the theory of locales. Sixth Prague Topological Symposium, 1986.
[16] J. Rosický and B. Šmarda: $T_1$-locales. Math. Proc. Cambridge Philos. Soc. 98 (1985), 81–86.
[17] H. Simmons: The lattice theoretic part of topological separation properties. Proc. Edinburgh Math. Soc. (2) 21 (1978), 41–48. MR 0493959 | Zbl 0396.54014
Partner of
EuDML logo