Previous |  Up |  Next

Article

Title: On integral inclusions of Volterra type in Banach spaces (English)
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 42
Issue: 4
Year: 1992
Pages: 693-714
.
Category: math
.
MSC: 34G20
MSC: 34K30
MSC: 45G10
MSC: 45N05
MSC: 49J24
idZBL: Zbl 0781.45014
idMR: MR1182201
DOI: 10.21136/CMJ.1992.128366
.
Date available: 2009-09-24T09:25:52Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128366
.
Reference: [1] H. Attouch: Variational Convergence for Functinals and Operators.Pitman, London, 1984.
Reference: [2] J. Banas and K. Goebel: Measures of Noncompactness in Banach Spaces.Marcel Dekker, New York, 1980. MR 0591679
Reference: [3] A. Bogatyrev: Fixed points and properties of solutions of differential inclusions.Math. USSR, Izvestia 23 (1984), 185–199. Zbl 0555.34011, MR 0712098, 10.1070/IM1984v023n01ABEH001462
Reference: [4] A. Bressan and G. Colombo: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69–86. MR 0947921, 10.4064/sm-90-1-69-86
Reference: [5] J. Diestel and J. Uhl: Vector Measures.Math. Surveys, Vol. 15, AMS, Providence, RI, 1977. MR 0453964
Reference: [6] J. Dugundji: Topology.Allyn and Bacon, Boston, 1966. Zbl 0144.21501, MR 0193606
Reference: [7] A. Friedman: Partial Differential Equations.Krieger, Huntington, New York, 1976. MR 0454266
Reference: [8] K. Glashoff and J. Sprekels: An application of Glicksberg’s theorem to set-valued integral equations arising in the theory of thermostats.SIAM J. Math. Anal. 12 (1981), 477–486. MR 0613326, 10.1137/0512041
Reference: [9] K. Glashoff and J. Sprekels: The regulation of temperature by thermostat and set-valued integral equations.J. Integral Equations 4 (1982), 95–112. MR 0654076
Reference: [10] C. Himmelberg: Measurable relations.Fund. Math. 87 (1975), 53–72. Zbl 0296.28003, MR 0367142, 10.4064/fm-87-1-53-72
Reference: [11] D. Kandilakis and N. S. Papageorgiou: Nonsmooth analysis and aproximation.J. Approx. Theory 52 (1988), 58–81. MR 0922594, 10.1016/0021-9045(88)90037-8
Reference: [12] D. Kandilakis and N. S. Papageorgiou: On the properties of the Aumann integral with applications to differential inclusions and control systems.Czechoslovak Math. J. 39 (1989), 1–15. MR 0983479
Reference: [13] D. Kandilakis and N. S. Papageorgiou: Properties of measurable multifunctions with stochastic domain and their applications.Math. Japonica 35 (1990), 629–643. MR 1067862
Reference: [14] E. Klein and A. Thompson: Theory of Correspondences.Willey, New York, 1984. MR 0752692
Reference: [15] G. Leitmann: Deterministic control and uncertain systems.Astronautica Acta 7 (1980), 1457–1461. 10.1016/0094-5765(80)90021-1
Reference: [16] G. Leitmann, E. Ryan and A. Steinberg: Feedback control of uncertain systems; Robusteness with respect to neglected actuator and sensor dynamics.Intern. J. Control 43 (1986), 1243–1256. MR 0832557, 10.1080/00207178608933535
Reference: [17] L. Lyapin: Hammerstein inclusions.Diff. Equations 12 (1976), 638–643.
Reference: [18] H. Mönch: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.Nonl. Anal.-TMA 4 (1980), 985–999. MR 0586861, 10.1016/0362-546X(80)90010-3
Reference: [19] N. S. Papageorgiou: Convergence theorems for Banach space-valued integrable multifunctions.Intern. J. Math. and Math. Sci. 10 (1987), 433–442. Zbl 0619.28009, MR 0896595, 10.1155/S0161171287000516
Reference: [20] N. S. Papageorgiou: Volterra integral inclusions in Banach spaces.J. Integral Equations and Applications 1 (1988), 65–82. Zbl 0659.45010, MR 0955163, 10.1216/JIE-1988-1-1-65
Reference: [21] N. S. Papageorgiou: Existence and convergence results for integral inclusions in Banach spaces.J. Integral Equations and Appl. 1 (1988), 265–285. Zbl 0668.45009, MR 0978744, 10.1216/JIE-1988-1-2-265
Reference: [22] N. S. Papageorgiou: Measurable multifunctions and their applications to convex integral functionals.Inter, J. Math. and Math. Sci. 12 (1989), 175–192. Zbl 0659.28008, MR 0973087
Reference: [23] N. S. Papageorgiou: On the theory of Banach space valued multifunctions: Part 1: Integration and conditional expectation.J. Multiv. Anal 17 (1985), 185–206. MR 0808276, 10.1016/0047-259X(85)90078-8
Reference: [24] N. S. Papageorgiou: Optimal control of nonlinear evolution inclusions.J. Optim. Theory and Appl. 67 (1990), 321–354. Zbl 0697.49007, MR 1080139, 10.1007/BF00940479
Reference: [25] R. Ragimkhanov: The existence of solutions to an integral equation with multivalued right-hand side.Siberian Math. Jour. 17 (1976), 533–536. 10.1007/BF00967875
Reference: [26] S. Szufla: On the existence of Volterra integral equations in Banach space.Bull. Polish Acad. Sci. 22 (1974), 1211–1213. MR 0380306
Reference: [26] H. Tanabe: Equations of Evolution.Pitman, London, 1977.
Reference: [28] E. Tarafdar and R. Výborný: Fixed point theorems for condensing multivalued mappings on a locally convex topological space.Bull. Austr. Math. Soc. 12 (1975), 161–170. MR 0383167, 10.1017/S0004972700023789
Reference: [29] R. Vaughn: Existence and comparison results for nonlinear Volterra integral equaitions in a Banach space.Appl. Anal. 7 (1978), 337–348. MR 0511320, 10.1080/00036817808839205
Reference: [30] D. Wagner: Survey of measurable selection theorems.SIAM J. Control Optim. 15 (1977), 859–903. Zbl 0407.28006, MR 0486391, 10.1137/0315056
Reference: [31] E. Zeidler: Nonlinear Functional Analysis and its Applications II.Springer, New York, 1990. Zbl 0684.47029, MR 0816732
.

Files

Files Size Format View
CzechMathJ_42-1992-4_13.pdf 2.183Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo