Previous |  Up |  Next

Article

References:
[1] Frič, R.: Rationals with exotic convergences II. Math. Slovaca 40 (1990), 389–400. MR 1120969
[2] Frič, R. and Koutník V.: Completions of convergence groups. in: General Topology and its Relations to Modern Analysis and Algebra VI (Proc. Sixth Prague Topological Sympos., 1986), Helderman Verlag, Berlin, 1988, pp. 187–201. MR 0952605
[3] Frič, R. and Koutník, V.: Completions for subcategories of convergence rings. in: Categorical Topology and its Relations to Ananlysis, Algebra and Combinatorics (Praha 1988), World Scientific Publishing Co., Singapore, 1989, pp. 195–207. MR 1047901
[4] Frič, R. and Zanolin, F.: A convergence group having no completion. in: Convergence Structures and Appications II, Abh. Adak, Wiss. DDR, Abt. Math.-Naturwiss.-Technik, 1984, Nr. 2N, Akademie-Verlag, Berlin, 1984, pp. 47–48. MR 0790151
[5] Frič, R. and Zanolin, F.: Sequential convergence in free groups. Rend. Ist. Matem. Univ. Trieste 18 (1986), 200–218. MR 0928331
[6] Frič, R. and Zanolin, F.: Relatively coarse convergence groups. (to appear). MR 0835476
[7] Kent, D. C. and Richardson, G. D.: Regular completions of Cauchy spaces. Pacific J. Math. 51 (1974), 483–490. DOI 10.2140/pjm.1974.51.483 | MR 0390989
[8] Koutník, V.: Completeness of sequential convergence groups. Studia Math. 77 (1984), 455–464. MR 0751766
[9] Koutník, V.: On completion of abelian $L_0^*$-groups. in: Generalized Functions and Convergence (Katowice 1988), World Scientific Publishing Co., Singapore, 1990, pp. 335–341. MR 1085521
[10] Koutník, V. and Novák, J.: Completion of a class of convergence rings. (to appear).
[11] Novák, J.: On convergence groups. Czechoslovak Math. J. 20 (1970), 357–384. MR 0263973
[12] Novák, J.: On completions of convergence commutative groups. in: General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335–340. MR 0365451
[13] Novák, J.: Convergences $L_S^H$ on the group of real numbers. (Seminar notes).
Partner of
EuDML logo